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Abstract 

This paper introduces a framework of human reasoning and its ACT-R based implementation called the 

Human Reasoning Module (HRM). Inspired by the human mind, the framework seeks to explain how a 

single system can exhibit different forms of reasoning ranging from deduction to induction, from 

deterministic to probabilistic inference, from rules to mental-models. The HRM attempts to unify 

previously mentioned forms of reasoning into a single coherent system rather than treating them as 

loosely connected separate subsystems. The validity of the HRM is tested with cognitive models of three 

tasks involving simple casual deduction, reasoning on spatial relations and Bayesian-like inference of 

cause/effect. The first model explains why people use an inductive, probabilistic reasoning process even 

when using ostensibly deductive arguments such as modus ponens and modus tollens. The second model 

argues that visual bottom-up processes can do fast and efficient semantic processing. Based on this 

argument, the model explains why people perform worse in a spatial relation problem with ambiguous 

solutions than in a problem with a single solution. The third model demonstrates that statistics of 

Bayesian-like reasoning can be reproduced using a combination of a rule-based reasoning and 

probabilistic declarative retrievals. All three models were validated successfully against human data. The 

HRM demonstrates that a single system can express different facets of reasoning exhibited by the human 

mind. As a part of a cognitive architecture, the HRM is promising to be a useful and accessible tool for 

exploring deeps of human mind and modeling biologically inspired agents. 

 

Keywords: reasoning, ACT-R, casual, spatial, Bayesian. 
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Introduction 

In this paper, we introduce a framework that attempts to unify various approaches to human reasoning. The 

Human Reasoning Module, or HRM, is an implementation of this framework developed as a part of the ACT-R 

cognitive architecture (Anderson, 2007). As opposed to ACT-R's core modules that represent specific types of 

cognitive resources such as vision or memory, the HRM does not add a new type of cognitive resource. The HRM 

extends the theoretical frameworks and corresponding computational functionalities of the existing modules of 

ACT-R. Therefore, the HRM is both a theory and a tool for modeling. As a theory, it advocates for a specific 

structure of knowledge organization in our declarative memory. The structure is still based on knowledge chunks, 

but adds specific requirements on chunk types and its slots. Furthermore, the HRM advocates the existence of task-

general procedural knowledge that gives us the ability to reason and solve problems based on real-time information 

and previous experience. The proposed structures of declarative and procedural knowledge define grammar, axiom 

schemata and inference rules of human logic. As a tool, the HRM both extends and constrains the functionality of 

ACT-R's declarative module and also adds a set of task-general production rules to ACT-R's procedural module. 

Ideally, if the HRM is a valid model of human reasoning it should be able to tackle any form of reasoning process. 

However, the HRM's current unification attempt is limited to two dimensions depicted in Fig. 1. The next subsection 

discusses in details these dimensions. 

 

 
 

Fig. 1 Two dimensions of human reasoning that the HRM attempts to unify. 

Inductive and deductive reasoning 

At the core of the HRM, there is an assumption that the human general reasoning skill is inherently probabilistic or 

inductive. Any true form of classical deductive reasoning requires a closed world assumption stating that what is not 

currently known to be true is false. This is an extremely unpractical assumption in the real world full of uncertainties 

(Rajasekar, Lobo, Minker, 1989), and we subconsciously or consciously recognize this fact. Cummins (1995) 

demonstrated that even when someone is reasoning with ostensibly deductive arguments one still uses an inductive, 

probabilistic reasoning process. Further uncertainty arises due to limitations of our cognitive resources: our 

perception of the world can be noisy or limited and our memory may be forgetful. With such uncertainties, any 

deductive system will fail the tests of validity and soundness, necessary requirements for any formal deductive 

inference (Jeffrey, 1981). Furthermore, we do not often try to satisfy both of these requirements in our reasoning 

process (Thompson, 1996). Therefore, the HRM operates under the open world assumption, what is not proven is 

not necessarily false, and tries to prove truthfulness rather than falsity of knowledge. 

However, the HRM does not exclude a possibility that deductive reasoning occurs within the context of specific 

tasks. Let us assume a specific problem that eliminates environmental uncertainties by clearly and unambiguously 

specifying contextual boundaries, constraints and rules. We can further assume that the problem is tractable within 

capacities and limitations of our cognitive resources, and there is no interference to the solution from our past 

knowledge outside of the problem's context. Such context will follow the closed world assumption, and, hence, 

deductive reasoning may be used. Therefore, in the HRM, there are no two separate processes for deductive or 

inductive reasoning. Instead, the HRM assumes that deductive reasoning is an instance of inductive reasoning over a 

specific domain of discourse with a near-zero uncertainty. A degree of uncertainty is the common dimension that 

implicitly unifies inductive and deductive reasoning in the HRM. 

Mental logic, mental models and bottom-up reasoning 
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Next, the HRM further argues that general human reasoning does not necessarily rely on formal propositional 

forms and is not strictly top-down (conscious). There is a long history of debate over the theories of mental models 

and mental logic. The mental logic theory argues that a set of inference rules is applied to logical forms abstracted 

from stimuli (Rips, 1983). A commonly agreed interpretation of mental models theory dictates that stimuli are 

abstracted into a form of mental diagram where configuration information reflects the relationship between entities 

(Banks & Millward, 2009; Johnson-Laird, 1983). In the HRM, the two theories are part of the same reasoning 

process. It is based on the assumption that these two are not mutually exclusive strategies. Roberts (1993) rightfully 

pointed to the fact that there are no obvious reasons why the two types of theories should be incompatible. Coney 

(1988) argued for individual differences based on a study showing that some people are better at spatial reasoning 

while others prefer reasoning based on formal propositions. Johnson-Laird (2004), a chief proponent of the mental 

models theory, admitted that the model theory does not imply that reasoners never rely on rules of inference. 

The HRM consolidates the two theories by assuming that a mental model is a form of working memory that allows 

convenient representation and storage of knowledge required for reasoning.  New premises, including ones not 

explicitly stated by the problem context, are assumed to be extracted on demand from the mental model during a 

rule-based inference similar to the mental logic. The mental model as a working memory simplifies a manipulation 

and retrieval of knowledge that otherwise has to be stored in a less efficient long-term memory. For example, items 

in the existing model can be easily reconfigured to produce an alternative model. The smaller amount of cognitive 

effort required by the mental model can explain why people prefer it over direct inference on given propositional 

forms. This interpretation of the mental model implies that it is not the main tool of reasoning by itself. This is a 

major distinction from Johnson-Laird's (2004) interpretation arguing that the probability of a conclusion is estimated 

based on the proportion of equipossible models in which it holds. Certainly, our interpretation of the mental model is 

more parsimonious. 

At this point, we need to map a metal model onto a specific cognitive resource. Johnson-Laird (2004) provided 

three functional requirements for the mental model: 1. A mental model should have an imagery capability to abstract 

meaning of premises into a mental diagram; 2. A mental model should be iconic; 3. Mental models should represent 

what is true, but not what is false. The cognitive resource that matches all above requirements is visual short-term 

memory (VSTM). It is specialized visuo-spatial mechanism in working memory for storing visual iconic 

information for a short duration (Logie, Zucco, Baddeley, 1990). VSTM stores a factual representation of the current 

state of affairs and, therefore, implies that information in it is assumed true. Arguably, one of the most important 

roles of VSTM is to retain and combine information gathered across successive fixations to construct dynamically a 

high-level internal representation of the outside world (Henderson & Hollingworth, 2003; Rensink 2000a, 2000b). 

The same process of retaining and combining information is likely to be necessary for building a mental model. 

Furthermore, VSTM is likely to have at least some imagery capability (Phillips, 1983; Wintermute, 2012). Phillips 

(1983), one of the first to introduce the concept of VSTM, emphasized that VSTM facilitates our ability to visualize 

problem space and is not just a sensory store. Jiang, Olson, and Chun (2000) reported that spatial information stored 

in VSTM includes not only object's location but also its relationship to other objects in VSTM. Based on these 

studies, we can conclude that VSTM is a suitable candidate for storing a mental model. 

Now, we should discuss whether VSTM is distinct from long-term declarative memory. Unlike declarative 

memory, VSTM needs to provide a fast and reliable access to information to allow the scene representation to be 

constructed dynamically across rapid fixations. Thus, VSTM is functionally different from declarative memory. 

Furthermore, Phillips (1983) made a clear distinction between VSTM and long-term visual memory noting that head 

injuries affecting long-term memory do not affect visualization. Baddeley (2003) argued for distinction between 

long-term memory and the multi-component working memory that includes visuospatial sketchpad with imagery 

capability, a functional analogue to VSTM. Neuroimaging studies suggest that the short-term memory responsible 

for storing visuo-spatial information is located in parietal lobe (Baddeley, 2003; Lum, Conti-Ramsden, Page, & 

Ullman, 2012; Xu & Chun, 2005) and not in the hippocampus that is commonly associated with declarative 

memory. Finally, Formisano, Linden, Di Salle, Trojano, Esposito, Sack, Grossi, Zanella, & Goebel (2002) showed 

that parietal lobe also performs distinct functions of mental imagery. All these factors together support our 

assumption that VSTM is a distinct memory suitable for building a mental model. 
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Fig. 2 The image on the left contains an implicit knowledge that the fork is on the left side of the plate. Such 

knowledge can be extracted to form explicit proposition on the right. 

 

The HRM treats the content of VSTM as a mental model unless it is irrelevant to the task. When available, the 

HRM extracts premises necessary for inference from the iconic content of VSTM. This process assumes that 

implicit semantic information is converted into explicit information. As an example, imagine that the VSTM 

contains visual objects as shown on left side of Fig. 2. Each object has set of features describing it such as color, 

shape, spatial position, etc. There is also relative spatial information, such as, the fork being on the left side of the 

plate. This information was not encoded as part of any object. However, it implicitly exists inside VSTM even 

though we may not be consciously aware of it until it is parsed. The relative spatial position can be quickly extracted 

on demand and converted into explicit propositional form shown on the right side of Fig. 2. Rensink (2007) 

indicated bottom-up visual processes may be able to process information at a semantic level subconsciously and 

even pre-attentively. It is feasible to assume that the same bottom-up processes are responsible for extracting explicit 

knowledge from implicit knowledge. Within the HRM, we refer to such process as visual bottom-up reasoning 

mechanism (not to be confused with inductive reasoning). We will further explore the mental logic and the mental 

model using an example task and a cognitive model based on the HRM. 

Deterministic and probabilistic inferences 

In the previous section, we have mentioned that the HRM uses rule-based inference that is inherently 

deterministic. This determinism relies on the assumption that the knowledge source is consistent and reliable. We 

also discussed that visual short-term memory is a source of knowledge for reasoning. As a form of working 

memory, VSTM provides a reliable access to reasonably consistent knowledge and does not violate above-

mentioned assumption. Therefore, when the reasoning process relies on VSTM only it can be deterministic and 

deductive.  

However, there is a second source of knowledge, a long-term declarative memory. The HRM uses ACT-R's 

declarative memory (DM). As a proper model of human long-term memory, DM has inherited its peculiarities as 

well. DM can contain inconsistent and often competing knowledge. Knowledge chunk retrieval is governed by 

probabilities based on activation values. As a result, retrieved knowledge may not match completely what is 

requested, or retrieval may even fail. It has been already suggested that DM plays a central role in casual reasoning 

(Drewitz & Brandenburg, 2012). The uncertainty over retrieved knowledge from DM transforms the HRM's rule-

based inference into probabilistic inference. Based on example models, this paper describes how the HRM is used to 

simulate casual deduction, pragmatic reasoning and even inductive Bayesian inference. 

Finally, little is known about the form of cognitive processes that provide meta-control over reasoning strategies. 

For example, how do we decide whether to use as a source of knowledge the mental model in a form of visual short-

term memory or declarative memory? Not every problem context can be converted into an iconic form, and in such 

cases, there is no other choice but to use knowledge in declarative memory. However, what if both VSTM and DM 

contain relevant or even conflicting knowledge? The HRM introduces a simple, but effective cognitive construct 

referred to as a reasoning pipeline that addresses these issues. A reasoning pipeline assumes a sequential process 

where alternative strategies are used one by one in increasing order of cognitive effort required until a conclusion is 

reached. For example, access to VSTM requires less time than a declarative retrieval. Thus, the HRM prefers 

reasoning based on VSTM knowledge to reasoning on declarative knowledge. 

Architecture of the HRM 

Knowledge representation in declarative memory 

Chunk types and chunks, instances of chunk types, represent factual knowledge in ACT-R. A chunk type defines a 

set of slots its instance chunks can inherit. Those slots can contain values describing chunk's properties. Those 

values can be either other chunks or atomic values such as strings of characters or numeric values. ACT-R provides 

no restrictions on chunk types and chunks that can be defined by a modeler. The HRM restricts a modeler to a 

predefined set of chunk types thereby encouraging a commitment to a common knowledge structure that is not 

model specific. The core set of chunk types in the HRM are ones describing concepts, triples and inference rules. 

Concepts and triples 

The atomic unit of knowledge in the HRM is a concept. Any unit of knowledge that has distinct semantic meaning 

can be a concept. There are two types of concepts in the HRM: property instance and class instance. Property 

instance is any concept that is used to relate two other concepts semantically. As such, the knowledge organization 
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inside the HRM revolves around a predicate construct referred to as a triple: (property subject object). Inside a 

triple, property establishes a semantic connection between subject and object. The following is an example of a 

triple: (r-left-of fork plate). In the HRM, r-left-of is a property instance that is used to represent a spatial relation 

between two class concepts. In example above, the meaning of the triple is equivalent to "a fork is in left side of a 

plate". 

A property instance can also be used as triple's subject or object. For example, the HRM has two different property 

instances, r-left-of and r-dir-left-of, for expressing a similar spatial relation between two class instances. r-dir-left-of 

expresses semantically more restrictive spatial relation implying that subject is to the left of an object, and both 

subject and object are aligned vertically. Therefore, triple (r-dir-left-of fork plate) entails triple (r-left-of fork plate). 

One way to express such one-way relation is to have another triple (entails r-dir-left-of r-left-of). Here, property 

instance entails semantically connects two other property instances instead of class instances. Otherwise, entails is 

no more special from other property instances such as r-left-of or r-dir-left-of. 

Most of the studies of human mental logic advocate for some form of predicate construct as a way of knowledge 

organization. We have chosen the triple form because it closely resembles a linguistic predicate typology consisting 

of subject, verb and object. It is the most common sentence structure found across different languages. Such 

commonality strongly indicates that underlying knowledge from which a sentence is constructed may also be 

organized in the same form consisting of subject, object and verb (Crystal, 1997). 

The HRM has a limited notion of time. A triple can be assigned a specific timestamp. For example, the sentence 

"John ate sandwiches yesterday and today" can be expressed with two triples with the same structure but different 

timestamps: 

  

(eat John sandwich (ts "yesterday")) 

(eat John sandwich (ts "today")) 

 

A special slot named ts is used to assign a timestamp. When necessary, the above two triples can be differentiated 

by timestamps, otherwise they are semantically similar. In current implementation of the HRM any value can be 

used as a timestamp. This implementation required the least amount of effort, but it is not a realistic representation 

of human temporal cognition. Ideally, there should be restrictions on what kind of values can be used to represent 

time. On the one hand, it can be an explicit class instance to represent our high level understanding of time and data. 

On the other hand, timestamp value can be more implicit estimations of time intervals done by our internal 

biological clock. ACT-R already provides a temporal module (Taatgen, Van Rijn & Anderson, 2007) that provides 

such time interval estimations. Future updates of the HRM should include more restrictions on time values as well as 

integration with the temporal module.  

Statements 

In the HRM, statement is a type of triple that represents factual knowledge. It is a statement of a fact that is true or 

was true. The example triples from the preceding subsection are all valid statements. The HRM provides several 

ways to create a statement. Firstly, a modeler can explicitly define custom statements, as model's background 

knowledge. Secondly, the model itself can create statements in real-time via production rule calls to a special 

reasoner buffer. This option simulates the ability to obtain new explicit knowledge through external input, such as 

stimuli from the outside world. Finally, a model can generate a new statement by inferring it from existing 

statements using top-down reasoning, or by deriving it from an implicit connection between concepts using bottom-

up reasoning. 

Implicit and explicit knowledge 

The HRM makes a distinction between explicit and implicit knowledge. Statements are explicit knowledge, a form 

of a knowledge that is known consciously. Implicit knowledge is knowledge that is represented by slot values of 

concept chunks. Such knowledge is implicit because it is assumed that ACT-R is not consciously aware of its 

presence, but subconsciously can extract it to form explicit statements using bottom-up processes. Following the 

previous example, there may not be any statement such as (r-left-of fork plate). However, concepts chunks for fork 

and plate may have slot values with x and y coordinates implicitly indicating relative spatial positions of two 

concepts. Those values then can be converted into explicit concepts such as r-left-of when necessary. 

Inference rules 

In the HRM, rules describe how a new statement can be inferred from existing statements. The HRM assumes that 

rules reflect our past experience and are formed as a result of our observations of relations among real-world entities 

such as cause/effect, pre-condition/action, action/post-condition observations, etc. Rules use special triples called 



Running head: Human Reasoning Module 7 
 

rule-statements. Semantically, a rule-statement is not a fact, but either a condition or an implication of a possibility. 

Any rule consists of left- and right-hand sides. A left-hand side must have one or more rule-statements (antecedent), 

and the right hand-side should have exactly one rule-statement (consequent). In order for a consequent to be true, all 

antecedent rule-statements should also be true. For example, the rule below states "if the fork is on the left of the 

plate then the plate is on the right of the fork": 

 

(r-left-of fork plate) ==> (r-right-of plate fork) 

 

Unlike ordinary statements, rule-statements can use variables as one of the entities in the triple. The previous 

example rule can be rewritten as: 

 

(r-left-of "@item" plate) ==> (r-right-of plate "@item") 

 

Above rule states "if any item is on the left of the plate then plate is on the right of that item". In this rule, "@item" 

is a variable, not a concept. The HRM recognizes as a variable any string value that starts with "@". It can be 

replaced by any valid concept that is factually on the left side of the plate. Variables provide a possibility to 

generalize rules beyond a scope of a particular concept or even an entire model. It also introduces a possibility to 

reuse the same rules across different ACT-R models, at least partially, addressing one of the major reusability 

challenges in ACT-R. 

Assertion 

Assertion is another type of triple used by the HRM. Assertion represents a query questioning the HRM whether a 

triple is true. For example, the assertion (r-right-of plate fork) represents the query: "Is the plate on the right side of 

the fork?" Similar to rule-statements, assertions can have variables. The assertion (r-right-of plate "@item") asks the 

HRM to find any class instance that is on the right side of the plate. In ACT-R, the HRM can be queried with an 

assertion via reasoner buffer. Upon receiving an assertion, the HRM starts a reasoning process called a backward 

reasoning pipeline. The task of reasoning pipeline is to check if assertion can be proven to be true or to find/prove 

any statement that matches the assertion if assertion contains variables. If assertion is true then it is converted into a 

statement and placed inside reasoner buffer. If a matching statement is found then that statement is put inside 

reasoner buffer. 

Schema and inference types 

Conditional proof schema 

The HRM uses the same conditional proof schema defined by Braine & O'Brien (1991): to derive or evaluate if p 

then q, first suppose p; when q follows from the supposition of p together with other information assumed, one may 

assert if p then q. This schema together with the open world assumption has several implications that make the 

HRM's inference different from an inference based on material conditionals of a classical logic: 

1. The HRM does not follow the closed world assumption unless it is explicitly required. Therefore, what the 

HRM cannot prove is not necessarily false. 

2. There can be two or more competing or conflicting inference rules that can be true at different instances: e.g. if 

p then q; if p then k. For example, the agent may build following two inference rules through observations of 

rolling dice: If throw dice then get 6; If throw dice then get 3. 

3. The sufficiency requirement will not necessarily hold: the antecedent p is not necessarily a sufficient condition 

for a consequent q because other information may be assumed to assert if p then q. Consider following common 

sense rule: If brakes are pressed then car stops. Most of the times, the rule is true. However, there it is assumed 

that, for example, the brakes are not broken.  

4. The validity requirement of deductive reasoning will not necessarily hold: the conclusion may not be true even 

if the premises are true. For example, the HRM may fail to assert if p then k because it already asserted if p then 

q. Consider the dice example from the implication 2. If a dice is thrown then the HRM may assume that result is 

6. The second possible conclusion of 3 remains untrue even though its premise of dice being thrown is true. 

Furthermore, the validity requirement cannot hold if the sufficiency requirement is not met. 

5. The law of contrapositive, or Modus Tollens (if p then q, therefore if ¬q then ¬p), also does not necessarily 

hold. Consider the contrapositive of the example from the implication 3: If a car hasn't stopped then the brakes 

were not pressed. Because of violation of the sufficiency requirement, the contrapositive argument may not be 

true: The brakes were pressed, but the car hasn't stopped because the brakes were broken. In this case, the 

assumed information that the brakes are not broken is not true. Therefore, the HRM does not automatically 
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generate contrapositives from inference rules. The HRM assumes that a contrapositive should be observed and 

memorized as an inference rule of its own right. 

The law of syllogism (if p then q, if q then k, therefore if p then k) is at the center of the HRM's capability for 

complex reasoning. Consider following example: If the sun sets then a night comes. If a night comes then a 

temperature drops. Therefore, if the sun sets then a temperature drops. There is no explicit relation between the sun 

setting and the temperature dropping in two rules. However, it can be inferred using of law of syllogism. The ability 

to chain the inference rules together allows the HRM to explore different reasoning strategies with the same 

inference process. 

Reasoning types 

The inference rules can be used for two types of reasoning in the HRM: backward and forward. Backward 

reasoning is used to determine whether a specific conclusion can be reached. Forward reasoning is used to determine 

what kind of conclusion can be reached given set of evidences. Backward reasoning retrieves an inference rule by 

matching its consequent, while forward reasoning retrieves the inference rule by matching its antecedent. For further 

explanation, let us assume that there is the following Rule 1: 

 

 
 

With Rule 1, the HRM can answer two types of questions. The first question is "Is car speed decreasing?". It is a 

question answerable by backward reasoning. The HRM's equivalent of this question will be an assertion (decrease 

car speed) sent to a reasoner buffer with an expected conclusion that it is true or not true. The assertion will be true 

if there is a rule that (1) has a consequent matching the assertion and (2) has an antecedent where all rule-statements 

are true or inferred to be true via the law of syllogism. In this case, the HRM will use the Rule 1 because its 

consequent matches the assertion. However, to infer that the assertion is true the HRM will also have to infer that 

Rule 1's antecedent is also true. We will discuss later various strategies used for such inference. 

The second question is "What happens if the brake is pressed, and it is not broken?". It is a question answerable by 

forward reasoning. The HRM's equivalent of this question will be supplying two facts, (have-state brake pressed) 

and (NOT-have-state brake broken), to the reasoner buffer and expecting some or no conclusion. The conclusion 

will be reached if there is a rule that (1) has an antecedent matching the given facts in the reasoner buffer and (2) 

has an antecedent where all rule-statements are true or inferred to be true due the law of syllogism. The facts in the 

reasoner buffer can be used to assert truth-values of the antecedent. In this case, the HRM concludes that the car 

speed should decrease (decrease car speed) because of the Rule 1. It is possible to ask another question such as 

"What happens if a brake is pressed?". The HRM's equivalent of this question will be supplying only single fact 

(have-state brake pressed) to a reasoner buffer. However, according to the Rule 1, the second fact, (NOT-have-state 

brake broken), is required to reach a conclusion. In such case, the HRM will try to prove the second fact using 

backward reasoning. 

A reasoning pipeline provides a meta-cognitive control over reasoning processes. The HRM uses two reasoning 

pipelines for backward and forward reasoning respectively. In ACT-R, reasoning pipelines are implemented as a 

series of automated calls to production rules built into the HRM. These production rules are task-general reasoning 

rules and are part of the cognitive architecture. This approach differs from traditional ACT-R modeling practices 

that treat all production rules as part of a model. On the other hand, the declarative inference rules are often treated 

(but not necessarily always) as being task-specific. The inference rules together with statements of facts provide a 

problem context within which the task-general production rules can reason and derive conclusions. 

Following the threaded cognition theory (Salvucci & Taatgen, 2008, 2011), reasoning pipelines are contained 

within the HRM's own cognitive thread that runs in parallel with other (model-specific) cognitive threads. This 

means that model-specific production rules irrelevant to reasoning pipelines can fire in-between production rules 

belonging to the HRM. It opens the possibility that declarative retrievals requested by other threads can interfere 

with the HRM's reasoning that relies heavily on declarative memory. Such interference is possible despite the fact 

that ACT-R locks access to declarative memory during individual retrieval instances (it is not possible to recognize a 

thread that initiated retrieval). Therefore, the HRM uses a stricter control that locks declarative memory through 

entirety of the reasoning pipeline. 

 

Interpretation: 

If a brake is pressed, and it is not broken 

then car speed decreases. 

 

Rule 1: 

(have-state brake pressed) 

(NOT-have-state brake broken) 

==> 

(decrease car speed) 
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Backward reasoning pipeline 

 As it was discussed earlier, new knowledge can be generated from existing knowledge using one of several 

different strategies. The backward reasoning pipeline establishes priority among those strategies and organizes them 

into series of consecutive steps. The highest priority strategy receives an assertion first and tries to prove it. If it fails 

then the assertion is passed to the next highest priority strategy. The HRM triggers calls to backward reasoning 

pipeline as soon as it receives an assertion request inside reasoner buffer. The backward reasoning pipeline 

recursively calls itself (the law of syllogism) until either the assertion is proven or it is decided that the assertion 

cannot be proven. 

Currently, backward reasoning pipeline supports three different strategies: bottom-up reasoning, declarative 

retrieval and top-down reasoning. Fig. 3 shows the prioritization of those strategies. Bottom-up reasoning is 

preferred requiring the least amount of cognitive effort. Bottom-up reasoning is followed by declarative retrieval and 

top-down reasoning in decreasing order of priority. 

 

 
 

Fig. 3 A simplified workflow of an HRM reasoning pipeline in ACT-R. 

Bottom-up reasoning 

The current implementation of the HRM's visual bottom-up reasoning supports only spatial reasoning. As with 

other forms of reasoning, spatial reasoning requires a source of knowledge based on which it can derive a new 

knowledge. In the HRM, such knowledge source is a visual short-term memory (VSTM). VSTM was introduced by 

the newer version of the Pre-Attentive and Attentive Vision module (Nyamsuren & Taatgen, 2013), an extension to 

ACT-R's default vision module. VSTM is a high resolution, but low capacity visual memory. Every visual object 

encoded from the external world is temporarily stored inside VSTM until it decays out or is deleted due to capacity 

limitations. Unlike declarative memory, VSTM is considered as a visual analog of a working memory. Hence, 

objects inside VSTM can be accessed by the HRM with no cognitive cost, and explicit knowledge can be derived 

with little effort. 

The HRM can take advantage of VSTM whenever it receives an assertion about spatial relation between two 

concepts such as (r-right-of plate fork). VSTM contains detailed information about each visual object currently in its 

store, including the object's original position in real world. In ACT-R, those are two-dimensional spatial coordinates. 

The HRM can use such implicit knowledge to quickly derive explicit statements about spatial relations between 

concepts inside VSTM. If one of those derived statements supports the assertion then the assertion is proven. 

Declarative retrieval  

If bottom-up reasoning fails then the HRM tries to retrieve from declarative memory any statement that can 

directly confirm the assertion. In ACT-R, a declarative retrieval can be a time-costly process. Furthermore, there is a 

chance that retrieval will fail even if a matching statement exists. Those are the reasons why bottom-up reasoning 

takes priority over declarative retrieval as a more reliable and faster process. 

Top-down reasoning 

Top-down reasoning is only invoked if declarative retrieval fails. It involves rule-based reasoning where a chain of 

inference rules is used to prove an assertion. 

The current implementation of the HRM supports a fully functional backward-chaining algorithm implemented as 

a set of ACT-R production rules. The first production retrieves from declarative memory any consequent rule-

statement that matches the assertion. If the retrieval of a rule's consequent is successful then the next production 

retrieves the first antecedent rule-statement of the same rule. The retrieved antecedent rule-statement is converted 

into an assertion and fed back to the HRM. This starts a new recursive call with a new reasoning pipeline. If 

recursive call was able to prove that current antecedent rule-statement is true then the next antecedent rule-statement 

is retrieved, converted into assertion and fed back to the HRM. This process continues until all antecedent rule-
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statements are proven. In such a case, the consequent rule-statement is also true, and, hence, the original assertion is 

true as well. If any of the antecedent rule-statements cannot be proven then the HRM stops the reasoning process 

and sets the reasoner buffer to an error state. 

The top-down reasoning consists of a series of production calls coupled with frequent declarative retrievals. Not 

only it is a hugely time-consuming process, but also it is very costly in terms of cognitive resources. Since ACT-R 

allows only one production call at the time, it creates a bottleneck for other task-specific productions. Furthermore, 

declarative memory is locked through entirety of the time the HRM uses it to prove an assertion. Hence, other 

cognitive processes cannot access declarative memory. The overall high cost puts top-down reasoning in the lowest 

priority position. 

Forward reasoning pipeline 

The simplified workflow of a forward reasoning pipeline is shown in Fig. 4.Given statements of facts as a query, 

the HRM retrieves from declarative memory any rule that has antecedent rule-statements matching the statements in 

the query. A rule selection is governed by several criteria. Firstly, a rule must have rule-statements matching all 

query statements. Secondly, the order of rule-statements must be the same as the order of corresponding query 

statements. Thirdly, irrelevant rules that may not lead to a desired conclusion can be ignored. One of the unique 

aspects of human reasoning is that we can do it with an intention of achieving a particular conclusion. It is also 

possible to do the same in the HRM. If a target concept is specified in a query then the HRM ignores all rules that do 

not mention that concept in its consequent rule-statements. All three criteria applied to rule retrieval are based on 

principles of memory retrieval during decision-making under uncertainty. It was suggested that memory chunks are 

evaluated during retrieval with respect to relevancy, availability and accessibility (Kahnemann, 2003) as well as 

cross compared with alternative retrieval candidates (Schooler & Hertwig, 2005). 
 

   
 

Fig. 4 A simplified workflow of a forward reasoning pipeline. 

 

If forward reasoning uses a rule that has antecedent rule-statements that were not specified in the query then those 

rule-statements are verified for truthfulness by invoking a backward reasoning. As such, forward reasoning is not 

purely forward and can have series of nested backward reasoning calls. This is different from traditional view where 

backward and forward reasoning are considered two distinct processes. The heterogeneous nature of the reasoning 

pipeline significantly increases a range of inference problems that the HRM can solve. The power of mixed forward 

and backward reasoning will be explored via example model of blicket categorization task (Griffiths, Sobel, 

Tenenbaum & Gopnik, 2011). 

Validation Models 



Running head: Human Reasoning Module 11 
 

This section introduces three models of different experimental tasks. Each model is used to replicate human 

behavioral and validated against human performance data.  

The model of a casual deduction task is used to demonstrate the HRM's basic reasoning abilities based on 

inference rules in declarative memory. It is the simplest of the validation models described in this study. It uses only 

declarative knowledge and does not require other modules such as vision. The reasoning strategy used by this model 

is limited to declarative retrieval of rules. The model demonstrates how competing and conflicting declarative 

knowledge can affect outcomes of even simple reasoning. It shows the importance of considering uncertainty in 

declarative retrieval results during any logical reasoning task.   

The model of a spatial reasoning task demonstrates the full potential of the HRM's backward reasoning ability. It 

uses all three backward reasoning strategies: bottom-up reasoning, declarative retrievals and top-down reasoning 

with recursive calls to the backward reasoning pipeline. The reasoning in this model uses knowledge in declarative 

memory as well as in visual short-term memory. 

This final model based on a blicket task is a demonstration of the HRM's ability to use both inductive and 

deductive reasoning approaches to solve problem of inferring cause and effect relationship from series of 

observations. The model mainly uses forward reasoning with series of nested calls to backward reasoning. In 

addition to declarative knowledge, the model is presented with new knowledge during the progress of the trial. As 

such, it is a good demonstration of how reasoning outcomes can change based on dynamic events even if the 

underlying set of inference rules remains the same.  

Model of Casual Deduction Task 

Cummins, Lubart, Alksnis and Rist (1991) and Cummins (1995) extensively studied the process of casual 

deduction. Subjects are provided with a sentence describing a cause/effect in a form of "If <cause>, then <effect>". 

The sentence is followed by four different forms of arguments: Modus Ponens (MP), Affirming the Consequent 

(AC), Modus Tollens (MT) and Denying the Antecedent (DA). Each argument consists of a fact and an implication. 

Subjects are asked to evaluate how likely it is that the implication is true given a cause/effect sentence and the 

argument's fact. Here is an original example from Cummins et al. (1991) of a cause/effect sentence: "If the brake 

was depressed, then the car slowed down." The four arguments with respect to this sentence are: "The brake was 

depressed. Therefore the car slowed down." for MP; "The car slowed down. Therefore the brake was pressed." for 

AC; "The car did not slow down. Therefore, the brake was not depressed." for MT; and "The brake was not 

depressed. Therefore, the car did not slow down." for DA. 

The study revealed that acceptance of arguments is influenced significantly by subjects' previous experience. The 

casual deduction was sensitive to two factors: alternative causes and disabling conditions (Cummins et al., 1991). 

An alternative cause is a cause that is different from one given in a sentence but still can result in the same effect. A 

disabling condition is a condition that prevents the effect from occurring despite the presence of a cause. Fig. 5 

shows the acceptance ratings of the four conditions gathered from two separate studies. Firstly, there is a robust 

effect of disabling conditions on acceptance of MP and MT arguments. When there are many possible disabling 

conditions, subjects are less likely to accept truthfulness of these two types of arguments. Secondly, there is a 

persistent effect of alternative causes on acceptance of DA and AC arguments. When there are many possible 

alternative causes of the effect, subjects are less likely to accept DA and AC arguments. Thirdly, it is not surprising 

that the acceptance rating varies a lot between two studies. The nature of the task is extremely subjective and 

participants' previous experiences vary a lot. It is likely that the rating further depend on the specific materials used 

in two experiments.  

Using an ACT-R model that uses the HRM's knowledge structure, we explore the nature of effects invoked by 

alternative causes and disabling conditions on our ability of casual deduction. 
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Fig. 5 Mean acceptance ratings of four argument forms in casual deduction experiments conducted in (a) Cummins 

et al. (1991) and (b) Cummins (1995). 

Model's knowledge structure 

In this experiment, the model used the same 16 cause/effect sentences described in Cummins (1995). The model 

stored both affirmative and negatives versions of all 16 sentences in its declarative memory in form of rules. For 

example, the previously mentioned example cause/effect sentence was converted to the following two rules: 

 

 
 

Inside declarative memory, the model also had alternative causes and disabling conditions for each sentence. They 

were also stored in form of rules. Here is an example of affirmative and negative rules for an alternative cause: 

 

 

 
 

An affirmative version of the same disabling condition can be written as two following rule forms: 

  

 
 

Both forms were stored in declarative memory. Finally, an example of a negative version of a disabling condition 

would be as following: 

 

Rule 6: 

(have-state brake pressed) 

(NOT-decrease car speed) 

==> 

(have-state brake broken) 

 

Rule 5: 

(have-state brake pressed) 

(have-state brake broken) 

==> 

(NOT-decrease car speed) 

 

Rule 4: 

(NOT-decrease car speed t) 

 ==> 

(NOT-have-state car go-uphill) 

Rule 3: 

(have-state car go-uphill) 

==> 

(decrease car speed) 

Rule 2: 

(NOT-decrease car speed) 

==>  

(NOT-have-state brake pressed) 

Rule 1: 

(have-state brake pressed) 

==> 

(decrease car speed) 
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Sentences were divided into four groups. In Many/Many group, a sentence had three disabling conditions and 

three alternative causes. In Many/Few group, there were three disabling conditions and one alternative cause. 

Similarly, the other two groups were Few/Many and Few/Few. 

Model's reasoning strategy 

With each sentence, the model had to do four trials, one for each argument form. The model's general strategy was 

simple: given an argument, retrieve any matching rule from declarative memory and verify if the rule supports the 

argument. The workflow of the strategy is shown in Fig. 6. Depending on the argument form, the model used 

different forms of reasoning. For MP arguments, the model did forward reasoning with fact. It retrieved any rule that 

had antecedent rule-statement matching the fact and checked if retrieved rule's consequent matched the implication. 

If a match was found, then the argument was accepted. For AC arguments, the model did backward reasoning with 

fact: it retrieved any rule that had consequent matching the fact and checked if any of the antecedent rule-statements 

matched the implication. If match was found then argument was accepted. In a similar manner, the model did 

forward reasoning with fact for MT arguments and forward reasoning with implication for DA arguments. 

 

 
  

Fig. 6 A workflow of the strategy used by the model of the Casual Deduction task. 

Results 

The model repeated the same experiment 50 times, accounting to a total of 3200 trials. Fig. 7 shows proportions of 

trials where arguments were accepted. The proportions were calculated separately for each combination of four 

argument forms and sentence groups. The model shows the same behavior as human subjects. The model is more 

likely to accept MP and MT arguments for cause/effect rules that have few disabling conditions. Next, the model is 

more likely to accept DA and AC arguments for cause/effect rules that have few alternative causes. 

 

Rule 7: 

(have-state brake pressed) 

(NOT-have-state brake broken) 

==> 

(decrease car speed) 

 



Running head: Human Reasoning Module 14 
 

 
 

Fig. 7 Proportions of arguments accepted by the model in four forms of arguments. 

 

The effects are explained by a mutual interference among rules during the step when the model tries to retrieve a 

proper rule that can support an argument. For example, let us assume that the model received following MP 

argument: 

 

Fact: (have-state brake pressed) 

Implication: (decrease car speed) 

 

In this scenario, the model will use the fact (have-state brake pressed) to retrieve any rule with matching 

antecedent rule-statement. These include not only the original cause/effect rule 1, but also the affirmative and 

negative disabling condition rules 5, 6 and 7. In presence of several matching chunks during a declarative retrieval, 

ACT-R randomly picks one. The rules 5 and 6 have consequents that are different from the argument's implication. 

Therefore, if either rule 5 or 6 is retrieved then the model will not accept the argument's implication. It is quite easy 

to see that as the number of disabling conditions increases, the model will be less likely to retrieve a rule that 

supports the argument and, hence, more likely to reject it. This rule interference mechanism is also responsible for 

the effects observed in other three argument forms. 

One aspect that should be considered is that the rules have the same activation values in the model. Hence, the 

rules have the same probability of retrieval. This is an unlikely scenario with human subjects. Firstly, an activation 

value for the same rule may differ between subjects. Secondly, different rules may have different activation values 

within a subject. For example, despite leading to the same conclusion, rule 7 is likely to have less activation than 

rule 1 because people do not worry often about state of the brakes. Use of equal activation values for all rules may 

have affected model fit. The model's acceptance rate of AC arguments is a bit higher than subjects' rate. Assigning 

lower activation values to negative versions of disabling conditions, such as rule 7, can decrease the acceptance rate 

of AC arguments and result in better fit. However, the current simpler version of the model serves better for the 

purpose of demonstrating the HRM's basic reasoning capabilities. 

It is certainly possible that other computational models can explain the same effects. However, in case of our 

model the main explanatory power comes not from the model built for this specific task, but rather from the aspects 

of the cognitive architecture: a combination of ACT-R's activation-based declarative memory and the HRM's 

conditional proof schema (Braine & O'Brien, 1991). 

Model of Spatial Relations Task 

This task is used to study people's fundamental ability to derive a spatial relation from a set of premises. Three 

problems below are examples of such task. In each problem, subjects are given four premises and then queried about 

the spatial relation between two items that were not explicitly connected in any of the premises. 

The studies showed that people prefer to use strategy of mental states rather than formal representations (Byrne & 

Johnson-Laird, 1989). In such strategy, people build mental states or imagery using abstract objects representing 

items in the premises.  Such mental state is built iteratively as premises are processed one by one (Carreiras & 

Santamaria, 1997). With such mental states, the spatial relation between two query items can be derived directly. 

Examples of mental states are shown below. Problem 1 results in one mental state. Problems 2 and 3 result in two 

possible mental states. Furthermore, the same studies have shown that one-state problems are easier than two-state 

problems. 

 



Running head: Human Reasoning Module 15 
 

 
 

 
 

 
 

Byrne and Johnson-Laird (1989) reported 61% and 50% correct responses in one- and two-state problems 

respectively. Similarly, Carreiras and Santamaria (1997) reported 99% and 89% correct responses in one- and two-

state problems. There are also two-state problems that have no valid conclusion. In those problems, mental states 

resulted in contradicting relations between two query items, and subjects were required to report that there is no 

single solution. For example, Problem 3 results in two possible mental states contradicting each other. Problems 

with no valid conclusion result in the lowest proportion of correct responses. Two separate experiments by Byrne 

and Johnson-Laird resulted in 18% and 15% of correct responses in problems with no valid conclusions. 

It is assumed that a two-state problem is more difficult because it requires higher working memory load than a 

one-state problem. However, it does not explain why accuracy drops even lower in a two-state problem with no 

valid conclusion. Both types of two-state problems have equal numbers of mental states, premises and items. 

Furthermore, both types of problems require two swaps to derive the second mental state from the first one. 

Therefore, the working memory load should be the same in both types of problems. As result, an explanation based 

on a working memory load is not sufficient to explain subjects' performance. Our ACT-R model that uses the HRM 

module provides a possible explanation for this effect. 

Model's design 

The model's strategy can be divided into five steps: 

1. The model constructs a mental state of the problem inside VSTM. The mental state is built iteratively by 

processing premises one at a time and updating VSTM on each iteration. Items from a premise are converted into 

abstract visual objects and given (x, y) coordinates based on positions relative to the items already existing inside 

VSTM. A premise is also converted into a logical statement stored inside declarative memory, but it is done only 

after VSTM is updated (Fig. 8a). The model can handle two-state problems. For example, while processing the 

second premise in Problem 2, the model uses assertion (r-dir-left-of "@item" B) to check if there is already another 

item present to left of B. This assertion triggers bottom-up spatial reasoning and the HRM returns any visual object 

that is to the left of B. In case of Problem 2, A is returned. Then the model stores both C and A inside its working 

memory as items to be swapped positions in a second mental state (Fig. 8b). In Problem 2, the mental state inside 

VSTM will be as following at the end of step 1: 

 
2. After all premises are processed and a mental state is built inside VSTM, the model sends an assertion to the 

HRM to try to answer a query. The assertion is in form of ("@property" D E). To answer the assertion, the HRM 

uses bottom-up spatial reasoning to evaluate relative positions of D and E inside VSTM. In case of Problem 2, the 

model's answer will be either (r-left-of D E) or (r-dir-left-of D E). 

3. If it is a one-state problem then the model does nothing else. However, if there are two possible mental states 

then, after answering the query and storing it in declarative memory, the model creates the second possible mental 

C A B 
D    E 

 

Possible mental states: 

C A B               A C B 
D E                  E D 
 

Problem 3: 

1. B is on the right of A 

2. C is on the left of B 

3. D is below C 

4. E is below A 

What is the relation between D and E?  

 

Possible mental states: 

C A B               A C B 
D    E                   D E 
 

Problem 2: 

1. B is on the right of A 

2. C is on the left of B 

3. D is below C 

4. E is below B 

What is the relation between D and E? 

 

Possible mental state: 

C B A 
D E 

 

Problem 1: 

1. A is on the right of B 

2. C is on the left of B 

3. D is below C 

4. E is below B 

What is the relation between D and E? 
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state inside VSTM. This is done by swapping positions of the two objects previously stored inside working memory. 

In case of Problem 2, C is placed at the position of A, and A is placed at the former position of C changing the 

mental state inside VSTM into following: 

 
4. At this step, the model checks if any visual object was positioned relative to the swapped objects. If that is the 

case then the model verifies if relations still hold, if not then positions of those objects are corrected as well. 

5. After creating the second mental state, the model sends to the HRM the same assertion as in step 2. The answer 

for this assertion is compared to the answer from step 2 that is retrieved from declarative memory. If answers are not 

the same then the model assumes that problem does not have valid conclusion and reports the inconsistency. 

 

 
 

Fig. 8 Two diagrams are describing how the model processes the first (a) and the second (b) premises of the 

Problem 2 during step 1 of the strategy. 

Results 

Model's proportions of correct responses in one-state problems, two-state problems with valid conclusion and two-

state problems with no valid conclusion are 100%, 74% and 31% respectively. The model always gives correct 

answers in one-state problems. However, it starts making mistakes in two-state problems. Furthermore, the model 

shows lowest accuracy in two-state problems with no valid conclusion. The cause of mistakes is model's confusion 

between similar spatial properties such as r-below and r-dir-below.  

The first mistake can be made during step 4. Consider following example from Problem 3 where the model just 

finished step 3 by swapping positions of A and C: 

 

 
 

During step 4, the model has to verify whether the spatial relation between D and C still holds. One of two 

possible assertions can be used for such verification: (r-below D C) or (r-dir-below D C). The model's choice is 

random in this case. However, if r-below is used then the assertion will be evaluated to be true since bottom-up 

reasoning with r-below does not check for vertical alignment. This leads the model to a wrong conclusion that D's 

position does not need to be corrected. Such mistake can lead to a situation where, for example, in Problem 3, the 

relation between D and E is still the same in both mental states. The second mistake can be made during comparison 

in step 5. Let us consider the case where, in Problem 2, the answers to the assertions in step 2 and 5 were (r-left-of D 

E) and (r-dir-left-of D E) respectively. These two statements, although similar, are not the same. Hence, if no 

explicit top-down reasoning is used to prove that one entails the other, the two answers are considered different. The 

model decides randomly whether to invoke top-down verification since it is not always necessary. 

The model makes more mistakes in two-state problems with no valid conclusion because it is vulnerable to both 

types of mistakes in those problems. However, only second mistake is possible in two-state problems with valid 

conclusion. In one-state problems, the model is not susceptible to any of those mistakes. 

Model of Bayesian-like Inference in Blicket Task 

C A B    ==>    A C B 
D E                  D E 

A C B 
D    E 
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We focused on a simulation of the first experiment conducted by Griffiths et al. (2011). The task context consists 

of ordinary pencils (blocks) and super pencils (blickets). We further refer to ordinary and super pencils as blocks and 

blickets. Subjects were asked to rate on a scale of 1-7 how likely a block was to be a blicket. Subjects' ratings were 

based on observations that consisted of one or two blocks placed on a special detector. The detector activated when 

at least one blicket was placed on it. Griffiths et al. used this task to study people's ability to infer casual relations 

based on number of observations and prior knowledge. 

The experiment consisted of three consecutive phases: a training phase, AB-event phase and A-event phase. 

Subjects were divided into five groups that received different trainings during the first phase. During the training, 

each subject was shown ten blocks placed individually on the detector one after another. Some blocks activated the 

detector (Fig. 9a) others did not (Fig. 9b). A subject's group determined the frequency of blickets among the ten 

blocks. In group 1/6, only one of ten blocks was a blicket. In group 1/3, three of ten were blickets. Similarly, 

subjects in groups 1/2, 2/3 and 5/6 observed five, seven and nine blickets respectively. 

After the training phase, the subjects were shown two new blocks, A and B. At this point, subjects were asked to 

provide initial ratings of how likely each was to be a blicket. Following the initial ratings, both A and B blocks were 

simultaneously placed on the detector causing it to detect a blicket (Fig. 9c). This phase is referred to as AB-event. 

After AB-event, subjects were asked to rate both blocks again. Finally, block A was placed alone on the detector 

activating it (Fig. 9d). This phase is referred to as A-event. Subjects were asked to rate A and B blocks after A-event 

as well. 

 

 
 

Fig. 9 (a) A blicket activates the detector during the training phase. (b) The detector remains inactive when ordinary 

block is placed on it during the training phase. (c) Two blocks, A and B, are placed on the detector activating it 

during AB-event. (a) During A-event, only block A is placed on the detector activating it. 

 

Before conducting the experiment, Griffiths at al. (2011) created a Bayesian model predicting the probabilities of 

objects A and B being rated as blickets. Fig. 10a shows those predictions for all five groups. According to the model 

predictions, the initial ratings reflect prior probabilities of encountering a blicket established by a training phase. 

Those ratings are higher in groups that observe a higher number of blickets during the training phase. After AB-

event, the mean ratings increase above baseline level. However, such increase gets smaller as baseline prior 

probability gets higher. After A-event, the object A is given a maximum rating. However, the rating of object B goes 

down. As shown in Fig. 10b, subjects' mean ratings closely follow predicted Bayesian probabilities. 
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Fig. 10 (a) Probability predictions of the Bayesian model created by Griffiths et al. (2011). (b) Human mean ratings 

of A and B pencils at initial stage, after AB  event and after A events. (c) Probabilities produced by our ACT-R 

model. 

Model's knowledge structure 

In addition to the basic set of concepts describing elements of the task, the model started with a core set of 

inference rules that are used to reason based on both previous experience and real-time evidence. Those rules are 

described on Table 1. 

Rules 0 and 1 reflect the commonly reported simple inductive strategy of solving a problem by analogy (Gentner, 

Holyoak, & Kokinov, 2001; Winston, 1980). Analogies are the basis for any integrated cognitive systems (Gust, 

Krumnack, Kühnberger, & Schwering, 2008). Therefore, it is reasonable to assume that subjects have rules to 

classify blocks by analogy given uncertainty. 

Rules 2-7 reflect the task structure and instructions subjects receive during the introduction to the experiment. 

Subjects were given demonstrations of blocks and blickets and their interactions with the detector. Subjects were 

shown cases with one and two blocks blocks placed on the detector simultaneously. The demonstrations were given 

to ensure that subjects clearly understood the activation laws. Rules 2 and 3 reflect laws of activation when only one 

block is placed on the detector. Rules 4-7 reflect laws of activation when two blocks are placed on the detector at the 

same time. 

Rule 8 is based on a backward blocking paradigm (Chapman, 1991; Miller & Matute, 1996; Shanks, 1985). When 

subjects are shown two cues (A and B) occurring with an outcome, subjects associate both cues with the outcome. 

Next, if subjects are shown only one of those cues (A) occurring with the outcome then subjects associate only the 

latter cue (A) with the outcome. The diminished association between the second cue (B) and the outcome in light of 

latter evidence is backward blocking effect. Furthermore, Sobel, Tenenbaum and Gopnik (2004) found that the 

degree of cue-outcome association in backward blocking is affected by the base rates of blickets.  Similarly, Rule 8 

considers the order of evidence and base rate of blickets to re-evaluate chances of a block being a blicket. 

Model's overall strategy 

The overall strategy consists of two major steps. The first step is evaluating presented evidence. This step is done 

every time the model is presented with one or more blocks placed on the detector. The model categorizes each block 
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based on the detector's state and prior knowledge. Such evidence evaluation is done via forward reasoning using 

rules on Table 1. The resulting categorizations of blocks are stored in model's declarative memory.  

The second step is a query response. When a query asking to categorize a block is received, the model tries to 

retrieve from declarative memory the recent categorization of the queried block. If the retrieval is successful then the 

retrieved categorization is reported. Otherwise, the model uses an analogy-based induction to decide block's 

category. The model retrieves another block that was already categorized and assigns its category to the queried 

block. The second step was implemented as two sequential backward reasoning calls for retrieval and analogy-based 

induction respectively. 

 

Table 1 Core set of rules used by the model to categorize A and B blocks. 

 

Rules Descriptions 

Rule 0: 

(have-role"@block1" "@role" (ts 

"base")) 

==> 

(have-role "@block2" "@role" (ts "init")) 

If a block on the antecedent has 

some category then assign the same 

category to the block in the 

consequent. 

Rule 1: 

(have-role "@block" "@role" (ts "@t1")) 

==> 

(have-role "@block" "@role" (ts "@t2")) 

If a block had some category at 

some time t1 then it has the same 

category at some time t2. 

Rule 2: 

(alone-on "@block" Detector (ts "@t1")) 

(have-state Detector Active (ts "@t1")) 

==> 

(have-role "@block" Blicket) 

If a block is alone on the active 

Detector then it is a blicket. 

Rule 3: 

(alone-on "@block" Detector (ts "@t1")) 

(have-state Detector Inactive (ts "@t1")) 

==> 

(have-role "@block" NON-Blicket) 

If a block is alone on the inactive 

Detector then it is not a blicket. 

Rule 4: 

(on "@block1" Detector (ts "@t1")) 

(on "@block2" Detector (ts "@t1")) 

(have-state Detector Active (ts "@t1")) 

==> 

(have-role "@block1" Blicket) 

If, at the same time, two blocks are 

on the active Detector then the first 

block is a blicket. Rule 5 is similar 

to Rule 4, but concludes that the 

second block is a blicket. 

Rule 6: 

(on "@block1" Detector (ts "@t1")) 

(on "@block2" Detector (ts "@t1")) 

(have-state Detector Active (ts "@t1")) 

(have-role "@block1" Blicket (ts "@t1")) 

==> 

(have-role "@block2" NON-Blicket) 

If, at the same time, two blocks are 

on the active Detector, and one of 

the blocks is a blicket then the other 

block is not a blicket. The Rule 7 is 

similar to Rule 6, but concludes that 

the first block is not a blicket. 

Rule 8: 

(alone-on "@block1" Detector (ts 

"@t1")) 

(have-state Detector Active (ts "@t1")) 

(on "@block1" Detector (ts "@t2")) 

(on "@block2" Detector (ts "@t2")) 

(have-state Detector Active (ts "@t2")) 

(have-role "@block2" NON-Blicket) 

==> 

(have-role "@block2" NON-Blicket) 

If there are two possible blocks that 

can activate Detector, and one was 

observed to activate the Detector 

alone, and the other one is likely not 

to be a blicket then the latter is not a 

blicket. 

Model's strategy for training phase 
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During the training phase, ten blocks are sequentially presented to the model. For example, the evidence presented 

to the model for the first block is: 

 

(alone-on Block1 Detector (ts "base")) 

(have-state Detector Active (ts "base")) 

 

The model uses forward reasoning to evaluate evidence and categorize ten blocks. Only Rules 2 and 3 are used 

because those rules always provided the best match to the presented evidence. The resulting categorization stored in 

the model's declarative memory can be as following: (have-role Block1 Blicket (ts "base")). The two rules represent 

typical instructions human subjects would receive during the task. 

Next, the model receives an initial request to categorize A and B blocks. Since the model has no existing 

categorization of the two blocks in its declarative memory, it has to use analogy-based induction to categorize each 

block. A backward reasoning with an example assertion (have-role BlockA "@role" (ts "init")) invokes Rule 0 from 

Table 1. Antecedent from Rule 0 triggers retrieval of any category statement belonging to one of ten blocks 

categorized during the training phase. Because all ten blocks have equal probabilities of retrieval, the probability of 

block A being categorized as blicket is equal to a prior probability of blickets established during the training phase. 

For example, if the model retrieves (have-role Block2 NON-Blicket (ts "base")) then block A will be also 

categorized as non blicket: (have-role BlockA NON-Blicket (ts "init")). 

Model's strategy for AB-event 

The evidence for AB-event is presented to the model as: 

 

(on BlockA Detector (ts "AB")) 

(on BlockB Detector (ts "AB")) 

(have-state Detector Active (ts "AB")) 

 

The order of the first two statements in the evidence is random. Given such evidence, the model uses a forward 

reasoning to categorize both A and B blocks during AB-event. Rules 4-7 have equal match to provided evidence.  

Rules 4 and 5 result in a block being categorized as blicket, while Rules 6 and 7 can result in a negative 

categorization. Four rules allow the model to guess based on the notion that at least one of the blocks should be a 

blicket without excluding the probability that the other one may not be a blicket. Because  of Rules 6 and 7, positive 

categorization for one block can result in negative categorization of another block. 

After evidence evaluation, the model is queried about A and B. The models reports with categories it has inferred 

during AB-event. The model may fail to categorize a block if either Rule 6 or 7 is used and the model does not have 

any fact supporting the last antecedent rule-statement (have-role "@block1" Blicket (ts "@t1")). In such cases the 

model reports category inferred during the training phase. This analogy-based induction is governed by Rule 1 and 

allows the model to fall back to prior decision if it is confused by ambiguous evidence such as in AB-event. 

Model's strategy for A-event 

The evidence for A-event is presented to the model as: 

 

(alone-on BlockA Detector (ts "A")) 

(have-state Detector Active (ts "A")) 

 

Given this evidence, the model again has to infer the categories for A and B. Inferring A's category is 

straightforward since Rule 2 is always the best match to infer A's category given the evidence above. 

Correspondingly, block A is always categorized as blicket. 

Inferring B's category is trickier since above evidence does not provide any information about B. The model uses 

Rule 8 to infer B's updated category. This rule was introduced to the model based on the effect of backward 

blocking. Backward blocking is observed in a task with two potential causes (A and B). It was found that subjects 

who observe that A alone can cause the outcome are less likely to accept B as a second cause than subjects that only 

observed A and B causing the outcome together (Shanks, 1985). Rule 8 allows the model to backward block B if it 

was previously observed together with A. According to the rule, if at any time B was categorized as non-blicket then 

that decision will be reinforced given the positive evidence about A. 

Model results 
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The model repeated the experiment 50 times. Proportions of times the model reported A and B as blickets are 

shown in Fig. 10c. The model's good fit supports the hypothesis that the casual learning in blicket tasks is not simply 

associative (Griffiths et al., 2011). Furthermore, our model provides a detailed account of underlying cognitive 

processes happening in human brain. The original Bayesian model by Griffiths et al. lacks such explanatory power. 

In addition to reflecting a knowledge structure required for the task, rules also govern how the knowledge should be 

evaluated and updated. 

The most intriguing aspect of our model is its ability to simulate Bayesian-like inference despite using an 

inherently deterministic rule-based inference. Just like the Bayesian model, our model is able to incorporate not only 

the immediate knowledge, but also prior knowledge that is being constantly updated throughout the task. Such 

behavior is facilitated by the fact that outcome of new inference is dependent on outcome of the previous inference. 

Furthermore, there are multiple competing rules that can be used for the same inference, and probabilistic nature of 

DM's retrieval is the defining factor over which rule is chosen. 

Discussion and Conclusion 

In this study we have proposed a computational module of human reasoning system called the HRM. We have also 

described three models of different reasoning tasks. These models tested and validated individual cognitive 

functionalities of the HRM based on a fit to human data.  

The model of spatial relations task shows an in depth view of how rule- and mental model-based reasoning 

strategies are used together in the same task. It is imperative for success that both strategies complement each other. 

The core of model-based reasoning is bottom-up reasoning, an ability to derive explicit knowledge from an implicit 

knowledge. Although fast and efficient, bottom-up reasoning has limitations on the complexity of semantics it can 

operate. Those limitations make the model-based reasoning prone to mistakes if not corrected by rule-based 

reasoning. On the other hand, top-down rule-based reasoning is a slow and costly process not feasible for real-time 

interactive tasks. It has to rely on a model-based reasoning to speed up the reasoning process. When a reasoning 

pipeline recursively calls itself, it blurs the boundary between rule- and model-based strategies since both of them 

may be used during the same reasoning process. 

The first casual deduction model is a demonstration of how a triple-based knowledge structure can help to explain 

how complex background knowledge can influence an outcome of even simple deductive reasoning. As such, it is 

no longer a deductive reasoning, but rather a pragmatic reasoning, a reasoning based on both a given propositional 

form and its content, previous knowledge (Braine & O'Brien, 1991). It is interesting to see a rise of the pragmatic 

reasoning in the HRM since it does not incorporate any dedicated controls for it. The very dependency of the HRM's 

deductive reasoning on ACT-R's declarative mechanisms gives rise to a quite natural pragmatic reasoning. As such, 

there is a possibility that a pragmatic reasoning is not a different logical process, but a deductive reasoning bound by 

properties and limitations of our long-term declarative memory. 

The model of blicket task further extends the notion of pragmatic reasoning and steps into a territory of Bayesian 

probabilistic inference. The model's good fit challenges the traditional view of vertical division between 

deterministic and probabilistic inferences of human reasoning. Instead, the model shows that given an inconsistent 

nature of human memory and uncertainty of its recall the deterministic inference can become probabilistic. 

One of the unexpected outcomes of this study is a seamless unification of similarity- and rule-based reasoning 

within the HRM. Earlier studies suggested that both rule- and similarity-based processing may emerge from 

application of a single learning rule (Pothos, 2005; Verguts & Fias, 2009). In the blicket model, Rules 0 and 1 are 

used for similarity-based reasoning while others are rules defined by the task. Both types of rules are handled by the 

HRM's reasoning pipelines, and transition from one form of reasoning to another is seamless and on-demand. 
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Fig. 11 Current forms of reasoning that were used by three models based on HRM. 

 

The eventual goal of developing Human Reasoning Module is to create a unified theory of human reasoning and a 

practical tool for simulating it. As such, the HRM was designed to be general and task-independent. It is not 

constrained to specific formal system of logic. These properties make the HRM potentially suitable for modeling 

wide variety of tasks. However, the same properties raise concerns whether the module can reliably simulate human 

behavior in specific reasoning tasks. We tried to mitigate those concerns by modeling three different tasks that 

address human reasoning from very different perspectives. We are still in the process of elaborating what the unified 

model of human reasoning should be. However, the HRM is promising to be a step in the right direction. Fig. 11 

shows the six forms of reasoning used by the three models. The first dimension unifies two popular theories of 

mental logic and mental models. The HRM assumes that a mental model is a form of working memory, Visual Short 

Term Memory, which has the capability to extract basic semantic relations from its content using fast and efficient 

bottom-up cognitive processes. Then, these semantic relations can be used by mental logic to perform more complex 

semantic processing. Therefore, the HRM argues that human reasoning is not strictly top-down and can rely on 

subconscious bottom-up processes to evaluate semantic relations. The second dimension unifies probabilistic 

inductive reasoning and deterministic deductive reasoning. The HRM suggests that the human general reasoning 

skill is likely to be inherently probabilistic and inductive due to stochastic nature of knowledge access and retrieval. 

However, deterministic deductive reasoning is still possible when knowledge-related uncertainty is minimized. 

Ideally, deductive reasoning is an instance of inductive reasoning with zero uncertainty. Therefore, the amount of 

uncertainty is the common dimension that unifies inductive and deductive reasoning. Furthermore, a degree of 

uncertainty may be one of the main factors defining reasoning strategy. Inductive reasoning can be viewed as an 

instance of probabilistic reasoning with a strong prior toward a particular conclusion. Probabilistic reasoning is 

inference based on significant past experiences defined by strengths of cause/effect, pre-condition/action, 

action/post-condition observations. Inference without prior knowledge about the given instance is either reasoning 

by analogy or simply guessing. In the HRM, reasoning by analogy is still done via rule-based reasoning. This 

unification of similarity-based and rule-based reasoning is the final dimension depicted in Fig. 11. 

Many open questions still remain. One of them is still how inference rules are constructed. For example, verbal 

instructions given to subjects in blicket task should be somehow translated into set of rules shown in Table 1. On the 

one hand, it is possible that we have set of general rules that serve as templates and are translated into task specific 

forms. On the other hand, there might be set of meta-rules similar to schema that govern how inference rules should 

be constructed based on the perceived information. 

The source code and related data for the HRM module and validation models can be downloaded from here: 

http://www.ai.rug.nl/~n_egii/models/ or http://www.bcogs.net. The current implementation of the HRM is in the 

prototype phase, and its features may change with future revisions.  
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Abbreviations 
 

HRM - Human Reasoning Module 

DM - Decalarative Memory 

VSTM - Visual Short-Term Memory 

MP - Modus Ponens 

MT - Modus Tollens 

DA - Denying the Antecedent 

AC - Affirming the Consequent 


