
From Casual Deduction to Spatial Relations: Bottom-up and Top-down Reasoning

Unified.

Enkhbold Nyamsuren (e.nyamsuren@rug.nl)

Niels A. Taatgen (n.a.taatgen@rug.nl)
Department of Artificial Intelligence, University of Groningen,

Nijenborgh 9, 9747 AG Groningen, Netherlands

Abstract

This paper introduces a framework of the human
deductive reasoning and its ACT-R based
implementation called Human Reasoning Module.
HRM provides a unified view of rule- and mental
model-based strategies of deductive reasoning. The
paper explores the role of bottom-up visual processes
and implicit knowledge in mental model-based
strategy. The validity of HRM is tested with cognitive
models of two tasks involving casual deduction and
reasoning on spatial relations. Via exploration through
these models, it is shown how HRM combined with
ACT-R's declarative memory give rise to a pragmatic
reasoning.

Keywords: deductive reasoning; rules; mental models;
bottom-up reasoning; ACT-R.

Introduction
In this paper, we introduce a framework of the human

deductive reasoning that incorporates semantics at both top-

down and visual bottom-up layers. Human Reasoning

Module, or HRM, is an implementation of this framework

developed as a part of ACT-R cognitive architecture

(Anderson, 2007).

Studies suggest two types of deductive reasoning

strategies: deduction rules and mental models. The theory

based on deduction rules argues for a mental logic that

applies a set of deduction rules to logical forms abstracted

from stimuli (Rips, 1983). The alternative theory based on

mental models dictates that stimuli are abstracted into some

form of mental diagram where configuration information

reflects relationship between entities (Johnson-Laird, 1983).

Latter studies indicated that two theories are not mutually

exclusive (Roberts, 1993). It was suggested that a strategy

most suitable for the task is used at the time.

Despite extensive research, little is known about the form

of cognitive processes that provide meta-control over these

two strategies. Furthermore, there is a distinct lack of

understanding how one reasoning strategy is chosen over

another depending on tasks. HRM introduces a simple, but

effective cognitive construct referred to as a reasoning

pipeline that addresses these issues. Next, despite ever-

increasing evidence supporting mental models, there is still

a lack of understanding of inner workings of mental models.

Specifically, question remains on how semantics is

extracted from mental models. We propose a visual bottom-

up reasoning (not to be confused with inductive reasoning)

mechanism as a primary means of extracting semantics. We

define bottom-up reasoning as an ability to extract explicit

knowledge from implicit knowledge via bottom-up

cognitive processes. Knowledge is implicit if it is available,

but we are not consciously aware of it.

This paper concentrates on visual bottom-up reasoning.

Studies suggest that bottom-up visual processes may be

much smarter than previously thought (Rensink, 2007).

Bottom-up visual processes may be able to process

information at a semantic level subconsciously and even

pre-attentively. It is assumed that the mental model is a form

of a visual memory that is an extension to a working

memory. Such visual memory can contain either objects that

were encoded from real world or abstractions of our

imagery capability (Wintermute, 2012). Information about

object's inherent properties, such as position, shape and

color, may also be present in visual memory in a form of

implicit knowledge. Such information can be readily

extracted with bottom-up visual processes and converted

into explicit knowledge on which top-down reasoning can

operate.

Architecture of HRM

Knowledge representation in declarative memory

Concepts and triples The atomic unit of knowledge in

HRM is a concept. Any unit of knowledge that has distinct

semantic meaning can be a concept. There are two types of

concepts in HRM: property instance and class instance.

Property instance is any concept that is used to relate

semantically two other concepts. As such, the knowledge

organization inside HRM revolves around a predicate

construct referred to as a triple: (property subject object).

Inside a triple, property establishes a semantic connection

between subject and object. The following is an example of

a triple: (r-left-of fork plate). In HRM, r-left-of is a property

instance that is used to represent a spatial relation between

two class concepts. In example above, the meaning of the

triple is equivalent to "a fork is in left side of a plate".

A property instance can also be used as triple's subject or

object. For example, HRM has two different property

instances, r-left-of and r-dir-left-of, for expressing a similar

spatial relation between two class instances. r-dir-left-of

expresses semantically more restrictive spatial relation

implying that subject is to the left of an object, and both

subject and object are aligned vertically. Therefore, triple (r-

dir-left-of fork plate) entails triple (r-left-of fork plate). One

way to express such one-way relation is to have another

triple (entails r-dir-left-of r-left-of). Here, property instance

entails semantically connects two other property instances.

Most of the studies of human mental logic advocate for

some form of predicate construct as a way of knowledge

organization. We have chosen the triple form because it

closely resembles a linguistic typology consisting of subject,

verb and object. It is the most common sentence structure

found across different languages. Such commonality

strongly indicates that underlying knowledge from which a

sentence is constructed may also be organized in the same

form consisting of subject, object and verb (Crystal, 1997).

HRM provides functionality for a modeler to create

custom property and class instances. It is also possible to

create custom triples. However, custom triples have to be

bound to one of the triple types built into HRM.

Statements In HRM, statement is a type of triple that

represents a factual knowledge. It is a statement of a fact

that is true or was true. Triples from preceding subsection

are all valid statements. HRM provides several ways to

create a statement. Firstly, modeler can explicitly define

custom statements, as model's background knowledge.

Secondly, model itself can create statements in real-time via

production rule calls to special reasoner buffer. This option

simulates an ability to obtain a new explicit knowledge

through external input, such as stimuli from an outside

world. Finally, a model can generate a new statement by

inferring it from existing statements using top-down

reasoning, or by deriving it from an implicit connection

between concepts using bottom-up reasoning.

Implicit and explicit knowledge HRM makes a distinction

between explicit and implicit knowledge. Statements are

explicit knowledge, form of a knowledge that is known

consciously. Implicit knowledge is a knowledge that is

represented by slot values of concept chunks. Such

knowledge is implicit because it is assumed that ACT-R is

consciously not aware of its presence, but subconsciously

can extract it to form explicit statements.

Inference rules In HRM, rules describe how a new

statement can be inferred from existing statements. Rules

use special triples called rule-statements. Semantically, a

rule-statement is not a fact, but either a condition or an

implication of a possibility. Any rule consists of left- and

right-hand sides. A left-hand side must have one or more

rule-statements (antecedent), and the right hand-side should

have exactly one rule-statement (consequent). In order for a

consequent to be true, all antecedent rule-statements should

also be true. For example, the rule below states "if the fork is

on the left of the plate then the plate is on the right of the

fork":
(r-left-of fork plate) ==> (r-right-of plate fork)

Unlike ordinary statements, rule-statements can use

variables as one of the entities in the triple. The previous

example rule can be rewritten as:
(r-left-of "@item" plate) ==> (r-right-of plate "@item")

Above rule states "if any item is on the left of the plate then

plate is on the right of that item". In this rule, "@item" is a

variable, not a concept. It can be replaced by any valid

concept that is factually on the left side of the plate.

Variables provide a possibility to generalize rules beyond a

scope of a particular concept or even an entire model. It also

introduces a possibility to reuse the same rules across

different ACT-R models, at least partially, addressing one of

the major reusability challenges in ACT-R.

Assertion Assertion is another type of triple used by HRM.

Assertion represents a query questioning HRM whether a

triple is true. For example, the assertion (r-right-of plate

fork) represents the query: "Is plate on the right side of the

fork?" Similar to rule-statements, assertions can have

variables. The assertion (r-right-of plate "@item") asks

HRM to find any class instance that is on the right side of

the plate. In ACT-R, HRM can be queried with an assertion

via reasoner buffer. Upon receiving an assertion, HRM

starts a reasoning process called a reasoning pipeline. The

task of reasoning pipeline is to check if assertion can be

proven to be true or to find/prove any statement that

matches the assertion if assertion contains variables. If

assertion is true then it is converted into a statement and

placed inside reasoner buffer.

Reasoning pipeline

The true power of HRM comes from its ability to generate a

new knowledge from existing one, either explicit or

implicit. For this purpose, HRM uses a reasoning pipeline.

As it was discussed earlier, new knowledge can be

generated from existing knowledge using one of several

different strategies. The reasoning pipeline establishes

priority among those strategies and organizes them into

series of consecutive steps. The highest priority strategy

receives an assertion first and tries to prove it. If it fails then

the assertion is passed to the next highest priority strategy.

In ACT-R architecture, reasoning pipeline is implemented

as a series of automated calls to production rules built into

HRM. HRM triggers calls to these production rules as soon

as it receives an assertion request inside reasoner buffer.

This set of production rules recursively calls itself until

either the assertion is proven or it is decided that the

assertion cannot be proven.

Figure 1: A simplified workflow of a HRM reasoning

pipeline in ACT-R.

In its current implementation, HRM supports three

different strategies of reasoning: bottom-up reasoning,

declarative retrieval and top-down reasoning. Figure 1

shows the prioritization of those strategies. The bottom-up

reasoning is the most preferred one requiring the least

amount of cognitive effort. The bottom-up reasoning is

followed by the declarative retrieval and the top-down

reasoning in a decreasing order of priority.

Bottom-up reasoning The current implementation of

HRM's visual bottom-up reasoning supports only spatial

reasoning. As with other forms of reasoning, spatial

reasoning requires source of knowledge based on which it

can derive a new knowledge. In HRM, such knowledge

source is a visual short-term memory (VSTM). VSTM was

introduced by the newer version of PAAV (Nyamsuren &

Taatgen, 2013), an extension to ACT-R's default vision

module. VSTM is a high resolution, but low capacity visual

memory. Every visual object encoded from an external

world is temporarily stored inside VSTM until it decays out

or deleted due to capacity limit. Unlike declarative memory,

VSTM is considered as a visual analog of a working

memory. Hence, objects inside VSTM can be accessed by

HRM with no cognitive cost, and explicit knowledge can be

derived with little effort.

HRM can take advantage of VSTM whenever it receives

an assertion about spatial relation between two concepts

such as (r-right-of plate fork). VSTM contains detailed

information about each visual object currently in its store,

including object's original position in real world. In ACT-R,

those are two-dimensional spatial coordinates. HRM can use

such implicit knowledge to derive quickly explicit

statements about spatial relations between concepts inside

VSTM. If one of those derived statements supports the

assertion then assertion is proven.

Declarative retrieval If bottom-up reasoning fails then

HRM tries to retrieve from declarative memory any

statement that can directly confirm the assertion. In ACT-R,

a declarative retrieval can be a time-costly process.

Furthermore, there is a chance that retrieval will fail even if

matching statement exists. Those are the reasons why

bottom-up reasoning takes priority over declarative retrieval

as a more reliable and faster process.

Top-down reasoning It is invoked only if declarative

retrieval fails. It is a rule-based reasoning where a chain of

inference rules is used to prove an assertion.

Current implementation of HRM supports fully functional

backward-chaining algorithm implemented as a set of ACT-

R production rules. The first production retrieves from

declarative memory any consequent rule-statement that

matches the assertion. If a retrieval of rule's consequent is

successful then the next production retrieves the first

antecedent rule-statement of the same rule. The retrieved

antecedent rule-statement is converted into an assertion and

fed back to HRM. This starts a new recursive call with a

new reasoning pipeline. If recursive call was able to prove

that current antecedent rule-statement is true then the next

antecedent rule-statement is retrieved, converted into

assertion and fed back to HRM. This process continues until

all antecedent rule-statements are proven. In such case,

consequent rule-statement is also true, and, hence, the

original assertion is true as well. If any of the antecedent

rule-statements cannot be proven then HRM stops the

reasoning process and sets reasoner buffer to an error state.

The top-down reasoning is a set of production calls

coupled with frequent declarative retrievals. Not only it is a

hugely time-consuming process, but also it is very costly in

terms of cognitive resources. Since ACT-R allows only one

production call at the time, it creates a bottleneck for other

task-specific productions. Furthermore, declarative memory

is locked through entirety of the time HRM uses it to prove

an assertion. Hence, other cognitive processes cannot access

declarative memory. The overall high cost puts top-down

reasoning in the lowest priority position.

Validation Models

Model of Casual Deduction Task

Cummins, Lubart, Alksnis and Rist (1991) and Cummins

(1995) extensively studied this task. Subjects are provided

with a sentence describing a cause/effect in a form of "If

<cause>, then <effect>". The sentence is followed by four

different forms of arguments: Modus Ponens (MP),

Affirming the Consequent (AC), Modus Tollens (MT) and

Denying the Antecedent (DA). Each argument consists of a

fact and implication. Subjects are asked to evaluate how

likely it is that implication is true given cause/effect

sentence and argument's fact. Here is an original example

from Cummins et al. (1991) of a cause/effect sentence: "If

the brake was depressed, then the car slowed down.". The

four arguments with respect to this sentence are: "The brake

was depressed. Therefore the car slowed down." for MP;

"The car slowed down. Therefore the brake was pressed."

for AC; "The car did not slow down. Therefore, the brake

was not depressed." for MT; and "The brake was not

depressed. Therefore, the car did not slow down." for DA.

The study revealed that acceptance of arguments is

influenced significantly by subject's previous experience.

The casual deduction was sensitive to two factors:

alternative causes and disabling conditions (Cummins et al.,

1991). Alternative cause is a cause that is different from a

one given in a sentence but still can result in the same effect.

Disabling condition is a condition that prevents the effect

from occurring despite the presence of a cause. Figure 2

shows the acceptance ratings of four conditions gathered

from two separate studies. Firstly, it is not surprising that

acceptance rating varies a lot between two studies. The

nature of the task is extremely subjective and participants'

previous experiences vary a lot. Secondly, there is a robust

effect of disabling conditions on acceptance of MP and MT

arguments. When there are many possible disabling

conditions, subjects are less likely to accept truthfulness of

these two types of arguments. Thirdly, there is a persistent

effect of alternative causes on acceptance of DA and AC

arguments. When there are many possible alternative causes

of the effect, subjects are less likely to accept DA and AC

arguments.

Using ACT-R model that uses HRM's knowledge

structure, we explore the nature of effects invoked by

alternative causes and disabling conditions on our ability of

casual deduction.

Figure 2: Mean acceptance ratings of four argument forms

in casual deduction experiments conducted in (a) Cummins

et al. (1991) and (b) Cummins (1995).

Model's knowledge structure In this experiment, the

model used the same 16 cause/effect sentences described in

Cummins (1995). The model stored both affirmative and

negatives versions of all 16 sentences in its declarative

memory in form of rules. For example, the previously

mentioned example cause/effect sentence was converted to

following two rules:
Rules 1 and 2:

(have-state brake pressed) ==> (decrease car speed)

(NOT-decrease car speed) ==> (NOT-have-state brake pressed)

Inside declarative memory, the model also had alternative

causes and disabling conditions for each sentence. They

were also stored in form of rules. Here is an example of

affirmative and negative rules for an alternative cause:
Rules 3 and 4:

(have-state car go-uphill) ==> (decrease car speed)

(NOT-decrease car speed t) ==> (NOT-have-state car go-uphill)

An affirmative version of the same disabling condition

can be written as two following rule forms:

Both forms were stored in declarative memory. Finally, an

example of a negative version of a disabling condition

would be as following:
Rule 7:

(have-state brake pressed)

(NOT-have-state brake broken)

==>

(decrease car speed)

Sentences were divided into four groups. In Many/Many

group, a sentence had three disabling conditions and three

alternative causes. In Many/Few group, there were three

disabling conditions and one alternative cause. Similarly,

the other two groups were Few/Many and Few/Few.

Model's reasoning strategy With each sentence, the model

had to do four trials, one for each argument form. Model's

general strategy was simple: given an argument, retrieve any

matching rule from declarative memory and verify if the

rule supports the argument. Depending on the argument

form, the model used different forms of reasoning. For MP

arguments, the model did forward reasoning with fact. It

retrieved any rule that had antecedent rule-statement

matching the fact and checked if retrieved rule's consequent

matched the implication. If a match was found, then the

argument was accepted. For AC arguments, the model did

backward reasoning with fact: it retrieved any rule that had

consequent matching the fact and checked if any of the

antecedent rule-statements matched the implication. If

match was found then argument was accepted. In a similar

manner, the model did forward reasoning with fact for MT

arguments and forward reasoning with implication for DA

arguments.

Results The model repeated the same experiment 50 times,

accounting to total of 3200 trials. Figure 3 shows

proportions of trials where arguments were accepted. The

proportions were calculated separately for each combination

of four argument forms and sentence groups. The model

shows the same behavior as human subjects. The model is

more likely to accept MP and MT arguments for

cause/effect rules that have few disabling conditions. Next,

the model is more likely to accept DA and AC arguments

for cause/effect rules that have few alternative causes.

Figure 3: Proportions of arguments accepted by the model

in four forms of arguments.

The effects are explained by a mutual interference among

rules during the step when the model tries to retrieve a

proper rule that can support an argument. For example, let

us assume that the model received following MP argument:
Fact: (have-state brake pressed)

Implication: (decrease car speed)

In this scenario, the model will use the fact (have-state

brake pressed) to retrieve any rule with matching antecedent

rule-statement. These include not only the original

cause/effect rule 1, but also affirmative and negative

disabling condition rules 5, 6 and 7. In presence of several

matching chunks during a declarative retrieval, ACT-R

(have-state brake pressed)

(NOT-decrease car speed)

==>

(have-state brake broken)

Rule 6:

 (have-state brake pressed)

(have-state brake broken)

==>

(NOT-decrease car speed)

Rule 5:

(a)

(b)

randomly picks one. The rules 5 and 6 have consequents

that are different from the argument's implication.

Therefore, if either rule 5 or 6 is retrieved then the model

will not accept the argument's implication. It is quite easy to

see that as the number of disabling conditions increases, the

model will be less likely to retrieve a rule that supports the

argument and, hence, more likely to reject it. This rule

interference mechanism is also responsible for the effects

observed in other three argument forms.

Model of Spatial Relations Task

This task is used to study people's fundamental ability to

derive a spatial relation from a set of premises. Three

problems below are examples of such task. In each problem,

subject is given four premises and then queried about spatial

relation between two items that were not explicitly

connected in any of the premises.

The studies showed that people prefer to use strategy of

mental states rather than formal representations (Byrne &

Johnson-Laird, 1989). In such strategy, people build mental

states or imagery using abstract objects representing items

in the premises. Such mental state is built iteratively as

premises are processed one by one (Carreiras & Santamaria,

1997). With such mental states, the spatial relation between

two query items can be derived directly. Examples of

mental states are shown below. Problem 1 results in a one

metal state. Problems 2 and 3 result in two possible mental

states. Furthermore, the same studies have shown that one-

state problems are easier than two-state problems.

Byrne and Johnson-Laird (1989) reported 61% and 50%

correct responses in one- and two-state problems

respectively. Similarly, Carreiras and Santamaria (1997)

reported 99% and 89% correct responses in one- and two-

state problems. There are also two-state problems that have

no valid conclusion. Problem 3 results in two possible

mental states contradicting each other. Problems with no

valid conclusion result in the lowest proportion of correct

responses. Two separate experiments by Byrne and

Johnson-Laird resulted in 18% and 15% of correct

responses in problems with no valid conclusions.

It is assumed that two-state problem is more difficult

because it requires higher working memory load than one-

state problem. However, it does not explain why accuracy

drops even lower in a two-state problem with no valid

conclusion. Our ACT-R model that uses HRM module

provides a possible explanation for this effect.

Model's design The model's strategy can be divided into

five steps:

1. The model constructs a mental state of the problem

inside VSTM. The mental state is built iteratively by

processing premises one by one and updating VSTM at each

iteration. Items from a premise are converted into abstract

visual objects and given (x, y) coordinates based on

positions relative to the items already existing inside

VSTM. A premise is also converted into a logical statement

stored inside declarative memory, but it is done only after

VSTM is updated. The model can handle two-state

problems. For example, while processing the second

premise in Problem 2, the model uses assertion (r-dir-left-of

"@item" B) to check if there is already another item present

to left of B. This assertion triggers bottom-up spatial

reasoning and HRM returns any visual object that is to the

left of B. In case of Problem 2, A is returned. Then the

model stores both C and A inside its working memory as

items to be swapped positions in a second mental state.

2. After all premises are processed and a mental state is

built inside VSTM, the model sends assertion to HRM to try

to answer a query. The assertion is in form of ("@property"

D E). To answer the assertion, HRM uses bottom-up spatial

reasoning.

3. If it is a one-state problem then the model does nothing

else. However, if there are two possible mental states then,

after answering the query, the model creates the second

possible mental state inside VSTM. This is done by

swapping positions of the two objects previously stored

inside working memory. In case of Problem 2, C is placed at

the position of A, and A is placed at the position of C.

4. At this step, the model checks if any visual object was

positioned relative to the swapped objects. If that is the case

then the model verifies if relations still hold, if not then

positions of those objects are corrected as well.

5. After creating the second mental state, the model sends

to HRM the same assertion as in step 2. The answer for this

assertion is compared to the answer from step 2. If answers

are not the same then the model assumes that problem does

not have valid conclusion.

Results Model's proportions of correct responses in one-

state problems, two-state problems with valid conclusion

and two-state problems with no valid conclusion are 100%,

76% and 34% respectively. The model always gives correct

answers in one-state problems. However, it starts making

mistakes in two-state problems. Furthermore, the model

shows lowest accuracy in two-state problems with no valid

conclusion. The cause of mistakes is model's confusion

between similar spatial properties such as r-below and r-dir-

below.

Problem 1:

1. A is on the right of B

2. C is on the left of B

3. D is below C

4. E is below B

What is the relation between D and E?

Possible mental state:

C B A
D E

Problem 2:

1. B is on the right of A

2. C is on the left of B

3. D is below C

4. E is below B

What is the relation between D and E?

Possible mental states:

C A B A C B
D E D E

Problem 3:

1. B is on the right of A

2. C is on the left of B

3. D is below C

4. E is below A

What is the relation between D and E?

Possible mental states:

C A B A C B
D E E D

The first mistake can be made during step 4. Consider

following example from Problem 3 where the model just

finished step 3 by swapping positions of A and C:

During step 4, the model has to verify whether the spatial

relation between D and C still holds. One of two possible

assertions can be used for such verification: (r-below D C)

or (r-dir-below D C). The model's choice is random in this

case. However, if r-below is used then the assertion will be

evaluated to be true since bottom-up reasoning with r-below

does not check for vertical alignment. This leads the model

to a wrong conclusion that D's position does not need to be

corrected. Such mistake can lead to a situation where, for

example, in problem 3, the relation between D and E is still

the same in both mental states. The second mistake can be

made during comparison in step 5. Let us consider the case

where, in problem 2, the answers to the assertions in step 2

and 5 were (r-left-of D E) and (r-dir-left-of D E)

respectively. These two statements, although similar, are not

the same. Hence, if no explicit top-down reasoning is used

to prove that one entails the other, the two answers are

considered different. The model decides randomly whether

to invoke top-down verification since it is not always

necessary.

The model makes more mistakes in two-state problems

with no valid conclusion because it is vulnerable to both

types of mistakes in those problems. However, only second

mistake is possible in two-state problems with valid

conclusion. In one-state problems, the model is not

susceptible to any of those mistakes.

Discussion and Conclusion

The current implementation of HRM is very much at a

prototype phase, and its features may change with future

revisions. However, preliminary results from the models of

casual deduction and spatial relations tasks are promising.

The casual deduction model is a demonstration of how a

triple-based knowledge structure can help to explain how

complex background knowledge can influence an outcome

of even simple deductive reasoning. As such, it is no longer

a deductive reasoning, but rather a pragmatic reasoning, a

reasoning based on both a given propositional form and its

content, previous knowledge (Braine & O'Brien, 1991). It is

interesting to see a rise of the pragmatic reasoning in HRM

since it does not incorporate any dedicated controls for it.

The very dependency of HRM's deductive reasoning on

ACT-R's declarative mechanisms gives rise to a quite

natural pragmatic reasoning. As such, there is a possibility

that a pragmatic reasoning is not a different logical process,

but a deductive reasoning bound by properties and

limitations of our long-term declarative memory.

The model of spatial relations task shows an in depth

view of how rule- and mental model-based reasoning

strategies are used together in the same task. It is imperative

for a success that both strategies complement each other.

The core of model-based reasoning is bottom-up reasoning,

an ability to derive explicit knowledge from an implicit

knowledge. Although fast and efficient, bottom-up

reasoning has limitations on the complexity of semantics it

can operate. Those limitations make the model-based

reasoning prone to mistakes if not corrected by rule-based

reasoning. In the other hand, top-down rule-based reasoning

is a slow and costly process not feasible for real-time

interactive tasks. It has to rely on a model-based reasoning

to speed up the reasoning process. When a reasoning

pipeline recursively calls itself, it blurs the boundary

between rule- and model-based strategies since both of them

may be used during the same reasoning process.

As a framework, HRM provides a unified view of two

reasoning strategies. Just like human mental logic, HRM, as

a module, was designed to be general and task-independent.

These properties make HRM suitable for modeling wide

variety of tasks. The source code and related data for HRM

module and validation models can be downloaded from

here: http://www.ai.rug.nl/~n_egii/models/.

References

Anderson, J. R. (2007). How Can Human Mind Occur in the

Physical Universe? New York: Oxford University Press.

Braine, M. D., & O'Brien, D. P. (1991). A Theory of "If": A

Lexical Entry, Reasoning Program, and Pragmatic

Principles. Psychological Review , 98 (2), 182-203.

Byrne, R. M., & Johnson-Laird, P. N. (1989). Spatial

Reasoning. Journal of Memory and Language , 28, 564-

575.

Carreiras, M., & Santamaria, C. (1997). Reasoning About

Relations: Spatial and Nonspatial Problems. Thinking and

Reasoning , 3 (3), 191-208.

Crystal, D. (1997). The Cambridge Encyclopedia of

Language. Cambridge: Cambridge University Press.

Cummins, D. D. (1995). Naive theories and causal

deduction. Memory & Cognition , 23 (5), 646-658.

Cummins, D. D., Lubart, T., Alksnis, O., & Rist, R. (1991).

Conditional reasoning and causation. Memory &

Cognition , 19 (3), 274-282.

Johnson-Laird, P. N. (1983). Mental Models: Towards a

Cognitive Science of Language, Inference, and

Consciousness. Cambridge: Cambridge University Press.

Nyamsuren, E., & Taatgen, N. A. (2013). Pre-attentive and

Attentive Vision Module. Cognitive Systems Research ,

24, 62-71.

Rensink, R. A. (2007). The modeling and control of visual

perception. In W. D. Gray, Integrated Models of

Cognitive Systems (pp. 132-148). New York: Oxford.

Rips, L. J. (1983). Cognitive processes in propositional

reasoning. Psychological Review , 90 (1), 38-71.

Roberts, M. J. (1993). Human Reasoning: Deduction Rules

or Mental Models, or Both? The Quarterly Journal of

Experimental Psychology , 46A (4), 569-589.

Wintermute, S. (2012). Imagery in cognitive architecture:

Representation and control at multiple levels of

abstraction. Cognitive Systems Research , 19-20, 1-29.

C A B
D E

A C B
D E

==>

