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Abstract 

This paper introduces a framework of the human 
deductive reasoning and its ACT-R based 
implementation called Human Reasoning Module. 
HRM provides a unified view of rule- and mental 
model-based strategies of deductive reasoning. The 
paper explores the role of bottom-up visual processes 
and implicit knowledge in mental model-based 
strategy. The validity of HRM is tested with cognitive 
models of two tasks involving casual deduction and 
reasoning on spatial relations. Via exploration through 
these models, it is shown how HRM combined with 
ACT-R's declarative memory give rise to a pragmatic 
reasoning. 

Keywords: deductive reasoning; rules; mental models; 
bottom-up reasoning; ACT-R. 

Introduction 
In this paper, we introduce a framework of the human 

deductive reasoning that incorporates semantics at both top-

down and visual bottom-up layers. Human Reasoning 

Module, or HRM, is an implementation of this framework 

developed as a part of ACT-R cognitive architecture 

(Anderson, 2007). 

Studies suggest two types of deductive reasoning 

strategies: deduction rules and mental models. The theory 

based on deduction rules argues for a mental logic that 

applies a set of deduction rules to logical forms abstracted 

from stimuli (Rips, 1983). The alternative theory based on 

mental models dictates that stimuli are abstracted into some 

form of mental diagram where configuration information 

reflects relationship between entities (Johnson-Laird, 1983). 

Latter studies indicated that two theories are not mutually 

exclusive (Roberts, 1993). It was suggested that a strategy 

most suitable for the task is used at the time. 

Despite extensive research, little is known about the form 

of cognitive processes that provide meta-control over these 

two strategies. Furthermore, there is a distinct lack of 

understanding how one reasoning strategy is chosen over 

another depending on tasks. HRM introduces a simple, but 

effective cognitive construct referred to as a reasoning 

pipeline that addresses these issues. Next, despite ever-

increasing evidence supporting mental models, there is still 

a lack of understanding of inner workings of mental models. 

Specifically, question remains on how semantics is 

extracted from mental models. We propose a visual bottom-

up reasoning (not to be confused with inductive reasoning) 

mechanism as a primary means of extracting semantics. We 

define bottom-up reasoning as an ability to extract explicit 

knowledge from implicit knowledge via bottom-up 

cognitive processes. Knowledge is implicit if it is available, 

but we are not consciously aware of it. 

This paper concentrates on visual bottom-up reasoning. 

Studies suggest that bottom-up visual processes may be 

much smarter than previously thought (Rensink, 2007). 

Bottom-up visual processes may be able to process 

information at a semantic level subconsciously and even 

pre-attentively. It is assumed that the mental model is a form 

of a visual memory that is an extension to a working 

memory. Such visual memory can contain either objects that 

were encoded from real world or abstractions of our 

imagery capability (Wintermute, 2012). Information about 

object's inherent properties, such as position, shape and 

color, may also be present in visual memory in a form of 

implicit knowledge. Such information can be readily 

extracted with bottom-up visual processes and converted 

into explicit knowledge on which top-down reasoning can 

operate. 

Architecture of HRM 

Knowledge representation in declarative memory 

Concepts and triples The atomic unit of knowledge in 

HRM is a concept. Any unit of knowledge that has distinct 

semantic meaning can be a concept. There are two types of 

concepts in HRM: property instance and class instance. 

Property instance is any concept that is used to relate 

semantically two other concepts. As such, the knowledge 

organization inside HRM revolves around a predicate 

construct referred to as a triple: (property subject object). 

Inside a triple, property establishes a semantic connection 

between subject and object. The following is an example of 

a triple: (r-left-of fork plate). In HRM, r-left-of is a property 

instance that is used to represent a spatial relation between 

two class concepts. In example above, the meaning of the 

triple is equivalent to "a fork is in left side of a plate". 

A property instance can also be used as triple's subject or 

object. For example, HRM has two different property 

instances, r-left-of and r-dir-left-of, for expressing a similar 

spatial relation between two class instances. r-dir-left-of 

expresses semantically more restrictive spatial relation 

implying that subject is to the left of an object, and both 

subject and object are aligned vertically. Therefore, triple (r-

dir-left-of fork plate) entails triple (r-left-of fork plate). One 

way to express such one-way relation is to have another 



triple (entails r-dir-left-of r-left-of). Here, property instance 

entails semantically connects two other property instances. 

Most of the studies of human mental logic advocate for 

some form of predicate construct as a way of knowledge 

organization. We have chosen the triple form because it 

closely resembles a linguistic typology consisting of subject, 

verb and object. It is the most common sentence structure 

found across different languages. Such commonality 

strongly indicates that underlying knowledge from which a 

sentence is constructed may also be organized in the same 

form consisting of subject, object and verb (Crystal, 1997). 

HRM provides functionality for a modeler to create 

custom property and class instances. It is also possible to 

create custom triples. However, custom triples have to be 

bound to one of the triple types built into HRM. 

 

Statements In HRM, statement is a type of triple that 

represents a factual knowledge. It is a statement of a fact 

that is true or was true. Triples from preceding subsection 

are all valid statements. HRM provides several ways to 

create a statement. Firstly, modeler can explicitly define 

custom statements, as model's background knowledge. 

Secondly, model itself can create statements in real-time via 

production rule calls to special reasoner buffer. This option 

simulates an ability to obtain a new explicit knowledge 

through external input, such as stimuli from an outside 

world. Finally, a model can generate a new statement by 

inferring it from existing statements using top-down 

reasoning, or by deriving it from an implicit connection 

between concepts using bottom-up reasoning. 

 

Implicit and explicit knowledge HRM makes a distinction 

between explicit and implicit knowledge. Statements are 

explicit knowledge, form of a knowledge that is known 

consciously. Implicit knowledge is a knowledge that is 

represented by slot values of concept chunks. Such 

knowledge is implicit because it is assumed that ACT-R is 

consciously not aware of its presence, but subconsciously 

can extract it to form explicit statements. 

 

Inference rules In HRM, rules describe how a new 

statement can be inferred from existing statements. Rules 

use special triples called rule-statements. Semantically, a 

rule-statement is not a fact, but either a condition or an 

implication of a possibility. Any rule consists of left- and 

right-hand sides. A left-hand side must have one or more 

rule-statements (antecedent), and the right hand-side should 

have exactly one rule-statement (consequent). In order for a 

consequent to be true, all antecedent rule-statements should 

also be true. For example, the rule below states "if the fork is 

on the left of the plate then the plate is on the right of the 

fork": 
(r-left-of fork plate) ==> (r-right-of plate fork) 

Unlike ordinary statements, rule-statements can use 

variables as one of the entities in the triple. The previous 

example rule can be rewritten as: 
(r-left-of "@item" plate) ==> (r-right-of plate "@item") 

Above rule states "if any item is on the left of the plate then 

plate is on the right of that item". In this rule, "@item" is a 

variable, not a concept. It can be replaced by any valid 

concept that is factually on the left side of the plate. 

Variables provide a possibility to generalize rules beyond a 

scope of a particular concept or even an entire model. It also 

introduces a possibility to reuse the same rules across 

different ACT-R models, at least partially, addressing one of 

the major reusability challenges in ACT-R. 

 

Assertion Assertion is another type of triple used by HRM. 

Assertion represents a query questioning HRM whether a 

triple is true. For example, the assertion (r-right-of plate 

fork) represents the query: "Is plate on the right side of the 

fork?" Similar to rule-statements, assertions can have 

variables. The assertion (r-right-of plate "@item") asks 

HRM to find any class instance that is on the right side of 

the plate. In ACT-R, HRM can be queried with an assertion 

via reasoner buffer. Upon receiving an assertion, HRM 

starts a reasoning process called a reasoning pipeline. The 

task of reasoning pipeline is to check if assertion can be 

proven to be true or to find/prove any statement that 

matches the assertion if assertion contains variables. If 

assertion is true then it is converted into a statement and 

placed inside reasoner buffer. 

Reasoning pipeline 

The true power of HRM comes from its ability to generate a 

new knowledge from existing one, either explicit or 

implicit. For this purpose, HRM uses a reasoning pipeline. 

As it was discussed earlier, new knowledge can be 

generated from existing knowledge using one of several 

different strategies. The reasoning pipeline establishes 

priority among those strategies and organizes them into 

series of consecutive steps. The highest priority strategy 

receives an assertion first and tries to prove it. If it fails then 

the assertion is passed to the next highest priority strategy. 

In ACT-R architecture, reasoning pipeline is implemented 

as a series of automated calls to production rules built into 

HRM. HRM triggers calls to these production rules as soon 

as it receives an assertion request inside reasoner buffer. 

This set of production rules recursively calls itself until 

either the assertion is proven or it is decided that the 

assertion cannot be proven. 

 

 
 

Figure 1: A simplified workflow of a HRM reasoning 

pipeline in ACT-R. 

 

In its current implementation, HRM supports three 

different strategies of reasoning: bottom-up reasoning, 

declarative retrieval and top-down reasoning. Figure 1 



shows the prioritization of those strategies. The bottom-up 

reasoning is the most preferred one requiring the least 

amount of cognitive effort. The bottom-up reasoning is 

followed by the declarative retrieval and the top-down 

reasoning in a decreasing order of priority. 

 

Bottom-up reasoning The current implementation of 

HRM's visual bottom-up reasoning supports only spatial 

reasoning. As with other forms of reasoning, spatial 

reasoning requires source of knowledge based on which it 

can derive a new knowledge. In HRM, such knowledge 

source is a visual short-term memory (VSTM). VSTM was 

introduced by the newer version of PAAV (Nyamsuren & 

Taatgen, 2013), an extension to ACT-R's default vision 

module. VSTM is a high resolution, but low capacity visual 

memory. Every visual object encoded from an external 

world is temporarily stored inside VSTM until it decays out 

or deleted due to capacity limit. Unlike declarative memory, 

VSTM is considered as a visual analog of a working 

memory. Hence, objects inside VSTM can be accessed by 

HRM with no cognitive cost, and explicit knowledge can be 

derived with little effort. 

HRM can take advantage of VSTM whenever it receives 

an assertion about spatial relation between two concepts 

such as (r-right-of plate fork). VSTM contains detailed 

information about each visual object currently in its store, 

including object's original position in real world. In ACT-R, 

those are two-dimensional spatial coordinates. HRM can use 

such implicit knowledge to derive quickly explicit 

statements about spatial relations between concepts inside 

VSTM. If one of those derived statements supports the 

assertion then assertion is proven. 

 

Declarative retrieval If bottom-up reasoning fails then 

HRM tries to retrieve from declarative memory any 

statement that can directly confirm the assertion. In ACT-R, 

a declarative retrieval can be a time-costly process. 

Furthermore, there is a chance that retrieval will fail even if 

matching statement exists. Those are the reasons why 

bottom-up reasoning takes priority over declarative retrieval 

as a more reliable and faster process. 

 

Top-down reasoning It is invoked only if declarative 

retrieval fails. It is a rule-based reasoning where a chain of 

inference rules is used to prove an assertion. 

Current implementation of HRM supports fully functional 

backward-chaining algorithm implemented as a set of ACT-

R production rules. The first production retrieves from 

declarative memory any consequent rule-statement that 

matches the assertion. If a retrieval of rule's consequent is 

successful then the next production retrieves the first 

antecedent rule-statement of the same rule. The retrieved 

antecedent rule-statement is converted into an assertion and 

fed back to HRM. This starts a new recursive call with a 

new reasoning pipeline. If recursive call was able to prove 

that current antecedent rule-statement is true then the next 

antecedent rule-statement is retrieved, converted into 

assertion and fed back to HRM. This process continues until 

all antecedent rule-statements are proven. In such case, 

consequent rule-statement is also true, and, hence, the 

original assertion is true as well. If any of the antecedent 

rule-statements cannot be proven then HRM stops the 

reasoning process and sets reasoner buffer to an error state. 

The top-down reasoning is a set of production calls 

coupled with frequent declarative retrievals. Not only it is a 

hugely time-consuming process, but also it is very costly in 

terms of cognitive resources. Since ACT-R allows only one 

production call at the time, it creates a bottleneck for other 

task-specific productions. Furthermore, declarative memory 

is locked through entirety of the time HRM uses it to prove 

an assertion. Hence, other cognitive processes cannot access 

declarative memory. The overall high cost puts top-down 

reasoning in the lowest priority position. 

Validation Models 

Model of Casual Deduction Task 

Cummins, Lubart, Alksnis and Rist (1991) and Cummins 

(1995) extensively studied this task. Subjects are provided 

with a sentence describing a cause/effect in a form of "If 

<cause>, then <effect>". The sentence is followed by four 

different forms of arguments: Modus Ponens (MP), 

Affirming the Consequent (AC), Modus Tollens (MT) and 

Denying the Antecedent (DA). Each argument consists of a 

fact and implication. Subjects are asked to evaluate how 

likely it is that implication is true given cause/effect 

sentence and argument's fact. Here is an original example 

from Cummins et al. (1991) of a cause/effect sentence: "If 

the brake was depressed, then the car slowed down.". The 

four arguments with respect to this sentence are: "The brake 

was depressed. Therefore the car slowed down." for MP; 

"The car slowed down. Therefore the brake was pressed." 

for AC; "The car did not slow down. Therefore, the brake 

was not depressed." for MT; and "The brake was not 

depressed. Therefore, the car did not slow down." for DA. 

The study revealed that acceptance of arguments is 

influenced significantly by subject's previous experience. 

The casual deduction was sensitive to two factors: 

alternative causes and disabling conditions (Cummins et al., 

1991). Alternative cause is a cause that is different from a 

one given in a sentence but still can result in the same effect. 

Disabling condition is a condition that prevents the effect 

from occurring despite the presence of a cause. Figure 2 

shows the acceptance ratings of four conditions gathered 

from two separate studies. Firstly, it is not surprising that 

acceptance rating varies a lot between two studies. The 

nature of the task is extremely subjective and participants' 

previous experiences vary a lot. Secondly, there is a robust 

effect of disabling conditions on acceptance of MP and MT 

arguments. When there are many possible disabling 

conditions, subjects are less likely to accept truthfulness of 

these two types of arguments. Thirdly, there is a persistent 

effect of alternative causes on acceptance of DA and AC 

arguments. When there are many possible alternative causes 



of the effect, subjects are less likely to accept DA and AC 

arguments.  

Using ACT-R model that uses HRM's knowledge 

structure, we explore the nature of effects invoked by 

alternative causes and disabling conditions on our ability of 

casual deduction. 

 

 
 

Figure 2: Mean acceptance ratings of four argument forms 

in casual deduction experiments conducted in (a) Cummins 

et al. (1991) and (b) Cummins (1995). 

 

Model's knowledge structure In this experiment, the 

model used the same 16 cause/effect sentences described in 

Cummins (1995). The model stored both affirmative and 

negatives versions of all 16 sentences in its declarative 

memory in form of rules. For example, the previously 

mentioned example cause/effect sentence was converted to 

following two rules: 
Rules 1 and 2: 

(have-state brake pressed) ==> (decrease car speed) 

(NOT-decrease car speed) ==> (NOT-have-state brake pressed) 

Inside declarative memory, the model also had alternative 

causes and disabling conditions for each sentence. They 

were also stored in form of rules. Here is an example of 

affirmative and negative rules for an alternative cause: 
Rules 3 and 4: 

(have-state car go-uphill)  ==> (decrease car speed) 

(NOT-decrease car speed t) ==> (NOT-have-state car go-uphill) 

An affirmative version of the same disabling condition 

can be written as two following rule forms: 

 
Both forms were stored in declarative memory. Finally, an 

example of a negative version of a disabling condition 

would be as following: 
Rule 7: 

(have-state brake pressed) 

(NOT-have-state brake broken) 

==> 

(decrease car speed) 

Sentences were divided into four groups. In Many/Many 

group, a sentence had three disabling conditions and three 

alternative causes. In Many/Few group, there were three 

disabling conditions and one alternative cause. Similarly, 

the other two groups were Few/Many and Few/Few. 

 

Model's reasoning strategy With each sentence, the model 

had to do four trials, one for each argument form. Model's 

general strategy was simple: given an argument, retrieve any 

matching rule from declarative memory and verify if the 

rule supports the argument. Depending on the argument 

form, the model used different forms of reasoning. For MP 

arguments, the model did forward reasoning with fact. It 

retrieved any rule that had antecedent rule-statement 

matching the fact and checked if retrieved rule's consequent 

matched the implication. If a match was found, then the 

argument was accepted. For AC arguments, the model did 

backward reasoning with fact: it retrieved any rule that had 

consequent matching the fact and checked if any of the 

antecedent rule-statements matched the implication. If 

match was found then argument was accepted. In a similar 

manner, the model did forward reasoning with fact for MT 

arguments and forward reasoning with implication for DA 

arguments. 

 

Results The model repeated the same experiment 50 times, 

accounting to total of 3200 trials. Figure 3 shows 

proportions of trials where arguments were accepted. The 

proportions were calculated separately for each combination 

of four argument forms and sentence groups. The model 

shows the same behavior as human subjects. The model is 

more likely to accept MP and MT arguments for 

cause/effect rules that have few disabling conditions. Next, 

the model is more likely to accept DA and AC arguments 

for cause/effect rules that have few alternative causes.  

 

 
 

Figure 3: Proportions of arguments accepted by the model 

in four forms of arguments. 

 

The effects are explained by a mutual interference among 

rules during the step when the model tries to retrieve a 

proper rule that can support an argument. For example, let 

us assume that the model received following MP argument: 
Fact: (have-state brake pressed) 

Implication: (decrease car speed) 

In this scenario, the model will use the fact (have-state 

brake pressed) to retrieve any rule with matching antecedent 

rule-statement. These include not only the original 

cause/effect rule 1, but also affirmative and negative 

disabling condition rules 5, 6 and 7. In presence of several 

matching chunks during a declarative retrieval, ACT-R 

(have-state brake pressed) 

(NOT-decrease car speed) 

==> 

(have-state brake broken) 

 

Rule 6: 

 (have-state brake pressed) 

(have-state brake broken) 

==> 

(NOT-decrease car speed) 

 

Rule 5: 

 

(a) 

 

(b) 

 



randomly picks one. The rules 5 and 6 have consequents 

that are different from the argument's implication. 

Therefore, if either rule 5 or 6 is retrieved then the model 

will not accept the argument's implication. It is quite easy to 

see that as the number of disabling conditions increases, the 

model will be less likely to retrieve a rule that supports the 

argument and, hence, more likely to reject it. This rule 

interference mechanism is also responsible for the effects 

observed in other three argument forms. 

Model of Spatial Relations Task 

This task is used to study people's fundamental ability to 

derive a spatial relation from a set of premises. Three 

problems below are examples of such task. In each problem, 

subject is given four premises and then queried about spatial 

relation between two items that were not explicitly 

connected in any of the premises. 

The studies showed that people prefer to use strategy of 

mental states rather than formal representations (Byrne & 

Johnson-Laird, 1989). In such strategy, people build mental 

states or imagery using abstract objects representing items 

in the premises.  Such mental state is built iteratively as 

premises are processed one by one (Carreiras & Santamaria, 

1997). With such mental states, the spatial relation between 

two query items can be derived directly. Examples of 

mental states are shown below. Problem 1 results in a one 

metal state. Problems 2 and 3 result in two possible mental 

states. Furthermore, the same studies have shown that one-

state problems are easier than two-state problems.  

 
Byrne and Johnson-Laird (1989) reported 61% and 50% 

correct responses in one- and two-state problems 

respectively. Similarly, Carreiras and Santamaria (1997) 

reported 99% and 89% correct responses in one- and two-

state problems. There are also two-state problems that have 

no valid conclusion. Problem 3 results in two possible 

mental states contradicting each other. Problems with no 

valid conclusion result in the lowest proportion of correct 

responses. Two separate experiments by Byrne and 

Johnson-Laird resulted in 18% and 15% of correct 

responses in problems with no valid conclusions. 

It is assumed that two-state problem is more difficult 

because it requires higher working memory load than one-

state problem. However, it does not explain why accuracy 

drops even lower in a two-state problem with no valid 

conclusion. Our ACT-R model that uses HRM module 

provides a possible explanation for this effect. 

 

Model's design The model's strategy can be divided into 

five steps: 

1. The model constructs a mental state of the problem 

inside VSTM. The mental state is built iteratively by 

processing premises one by one and updating VSTM at each 

iteration. Items from a premise are converted into abstract 

visual objects and given (x, y) coordinates based on 

positions relative to the items already existing inside 

VSTM. A premise is also converted into a logical statement 

stored inside declarative memory, but it is done only after 

VSTM is updated. The model can handle two-state 

problems. For example, while processing the second 

premise in Problem 2, the model uses assertion (r-dir-left-of 

"@item" B) to check if there is already another item present 

to left of B. This assertion triggers bottom-up spatial 

reasoning and HRM returns any visual object that is to the 

left of B. In case of Problem 2, A is returned. Then the 

model stores both C and A inside its working memory as 

items to be swapped positions in a second mental state. 

2. After all premises are processed and a mental state is 

built inside VSTM, the model sends assertion to HRM to try 

to answer a query. The assertion is in form of ("@property" 

D E). To answer the assertion, HRM uses bottom-up spatial 

reasoning. 

3. If it is a one-state problem then the model does nothing 

else. However, if there are two possible mental states then, 

after answering the query, the model creates the second 

possible mental state inside VSTM. This is done by 

swapping positions of the two objects previously stored 

inside working memory. In case of Problem 2, C is placed at 

the position of A, and A is placed at the position of C. 

4. At this step, the model checks if any visual object was 

positioned relative to the swapped objects. If that is the case 

then the model verifies if relations still hold, if not then 

positions of those objects are corrected as well. 

5. After creating the second mental state, the model sends 

to HRM the same assertion as in step 2. The answer for this 

assertion is compared to the answer from step 2. If answers 

are not the same then the model assumes that problem does 

not have valid conclusion. 

 

Results Model's proportions of correct responses in one-

state problems, two-state problems with valid conclusion 

and two-state problems with no valid conclusion are 100%, 

76% and 34% respectively. The model always gives correct 

answers in one-state problems. However, it starts making 

mistakes in two-state problems. Furthermore, the model 

shows lowest accuracy in two-state problems with no valid 

conclusion. The cause of mistakes is model's confusion 

between similar spatial properties such as r-below and r-dir-

below.  

Problem 1: 

1. A is on the right of B 

2. C is on the left of B 

3. D is below C 

4. E is below B 

What is the relation between D and E? 

 

 

Possible mental state: 

C B A 
D E 

 

Problem 2: 

1. B is on the right of A 

2. C is on the left of B 

3. D is below C 

4. E is below B 

What is the relation between D and E? 

 

 

Possible mental states: 

C A B               A C B 
D    E                   D E 
 

Problem 3: 

1. B is on the right of A 

2. C is on the left of B 

3. D is below C 

4. E is below A 

What is the relation between D and E? 

 

 

Possible mental states: 

C A B               A C B 
D E                  E D 
 



The first mistake can be made during step 4. Consider 

following example from Problem 3 where the model just 

finished step 3 by swapping positions of A and C: 

 
During step 4, the model has to verify whether the spatial 

relation between D and C still holds. One of two possible 

assertions can be used for such verification: (r-below D C) 

or (r-dir-below D C). The model's choice is random in this 

case. However, if r-below is used then the assertion will be 

evaluated to be true since bottom-up reasoning with r-below 

does not check for vertical alignment. This leads the model 

to a wrong conclusion that D's position does not need to be 

corrected. Such mistake can lead to a situation where, for 

example, in problem 3, the relation between D and E is still 

the same in both mental states. The second mistake can be 

made during comparison in step 5. Let us consider the case 

where, in problem 2, the answers to the assertions in step 2 

and 5 were (r-left-of D E) and (r-dir-left-of D E) 

respectively. These two statements, although similar, are not 

the same. Hence, if no explicit top-down reasoning is used 

to prove that one entails the other, the two answers are 

considered different. The model decides randomly whether 

to invoke top-down verification since it is not always 

necessary. 

The model makes more mistakes in two-state problems 

with no valid conclusion because it is vulnerable to both 

types of mistakes in those problems. However, only second 

mistake is possible in two-state problems with valid 

conclusion. In one-state problems, the model is not 

susceptible to any of those mistakes. 

Discussion and Conclusion 

The current implementation of HRM is very much at a 

prototype phase, and its features may change with future 

revisions. However, preliminary results from the models of 

casual deduction and spatial relations tasks are promising. 

The casual deduction model is a demonstration of how a 

triple-based knowledge structure can help to explain how 

complex background knowledge can influence an outcome 

of even simple deductive reasoning. As such, it is no longer 

a deductive reasoning, but rather a pragmatic reasoning, a 

reasoning based on both a given propositional form and its 

content, previous knowledge (Braine & O'Brien, 1991). It is 

interesting to see a rise of the pragmatic reasoning in HRM 

since it does not incorporate any dedicated controls for it. 

The very dependency of HRM's deductive reasoning on 

ACT-R's declarative mechanisms gives rise to a quite 

natural pragmatic reasoning. As such, there is a possibility 

that a pragmatic reasoning is not a different logical process, 

but a deductive reasoning bound by properties and 

limitations of our long-term declarative memory. 

The model of spatial relations task shows an in depth 

view of how rule- and mental model-based reasoning 

strategies are used together in the same task. It is imperative 

for a success that both strategies complement each other. 

The core of model-based reasoning is bottom-up reasoning, 

an ability to derive explicit knowledge from an implicit 

knowledge. Although fast and efficient, bottom-up 

reasoning has limitations on the complexity of semantics it 

can operate. Those limitations make the model-based 

reasoning prone to mistakes if not corrected by rule-based 

reasoning. In the other hand, top-down rule-based reasoning 

is a slow and costly process not feasible for real-time 

interactive tasks. It has to rely on a model-based reasoning 

to speed up the reasoning process. When a reasoning 

pipeline recursively calls itself, it blurs the boundary 

between rule- and model-based strategies since both of them 

may be used during the same reasoning process. 

As a framework, HRM provides a unified view of two 

reasoning strategies. Just like human mental logic, HRM, as 

a module, was designed to be general and task-independent. 

These properties make HRM suitable for modeling wide 

variety of tasks. The source code and related data for HRM 

module and validation models can be downloaded from 

here: http://www.ai.rug.nl/~n_egii/models/. 
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